Methods for localizing network link failures

Akbari Indra Basuki and Fernando Kuipers
Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
[.B.Akbari @tudelft.nl, F.A.Kuipers @tudelft.nl

Abstract—Most of today’s networks use Link Aggregated
Group (LAG) to increase the bandwidth. A single physical link
failure under LAG will reduce network capacity significantly.
Unfortunately, there are no standard protocols to localize link
failure, especially to localize link failure at the physical layer.
Some protocols, such as BFD and LACP, only work locally and
do not distribute a notification about the link failure. SNMP,
OSPF, and IS-IS only work at the data-link layer. In this paper,
we will evaluate and compare the methods to localize link
failure in the presence of LAG. The methods can be classified
into two mechanisms: correlated-paths probing and per-link
monitoring. We first implement per-link monitoring methods
using Software Defined Networking (SDN) and compare them
with existing correlated-paths probing based on their scalability,
latency, accuracy, flexibility, and applicability. Our results show
that there is no overall winner, but gives insight into which
approach is best suited for which objectives.

Index Terms—Localizing link failure, per-path monitoring,
per-link monitoring, SDN.

I. INTRODUCTION

Today’s networks consist of high-speed lines having tens
to hundreds of Gb/s capacity per link. One single link failure
could therefore significantly reduce network capacity. In order
to timely react to link failures or reduced performance that
is indicative of imminent link failure, it is important to be
able to quickly and accurately pinpoint the location of a link
failure. Packet rerouting, by forwarding the packet through an
alternative path, is the first action to be taken to minimize
packet loss. The next step is to re-evaluate the routing inside
the network, to make sure that the reduced network capacity is
exploited in the best way possible. And, finally, efforts should
be undertaken to repair the failed network parts as soon as
possible. For all steps, it is crucial to quickly know what has
failed where in the network.

Localizing Link Failure (LLF) is far from trivial, since
there are no standard protocols that facilitate this. SNMP
[18], OSPF [14], and IS-IS [20], for example, are only able
to detect link failures at the data-link-layer level. Localizing
link failure at the physical layer is important, considering that
today’s networks often use Link Aggregation Group (LAG,
Fig. 1) to combine several physical links into a single data-
link-layer link. This allows to reach Tb/s link capacity by
combining several 100 Gb/s fiber optic links. Unfortunately,
today’s network protocols are unable to localize link failures
occurring inside aggregated links (unless such aggregated links
would fail completely). Other protocols, such as BFD [§]
and LACP [2], only handle link failures locally and do not
report failures to a central controller or set of monitoring

nodes. More advanced link-failure monitoring approaches are
therefore needed.

Link layer (" e >
S - (==
- -

Fig. 1. A link failure within an aggregated link.

Phy. layer

Two kinds of monitoring methods can be considered to
localize a link failure: (1) correlated-paths probing and (2)
per-link monitoring.

Existing solutions to localize link failure usually adopt
correlated-paths monitoring by sending probe packets over
explicit paths, via existing network protocols like RSVP-TE
and MPLS.

Typically, there are four steps in correlated-paths-based
link failure localization: (1) selecting a (or some) monitoring
point(s), (2) computing monitoring paths through the network
and back to the monitoring point(s), (3) sending the probe
packets over the monitoring paths, and (4) correlating the
results on which probe packets arrived over which paths to
determine the location of link failures. While the approach
may work, it suffers from several drawbacks:

o Scalability problems: Typical path computations, such as

for P-cycles [6], are hard to solve in large networks.

o Lack of multi-link failure support: Most of the correlated-
paths-based LLF solutions only work for single link
failures, because localizing multiple link failures requires
intensive computation in determining monitoring paths
[6].

« Inflexible to network changes: The monitoring paths and
look-up-tables for the correlation process have to be
recomputed in case the network topology or monitoring
nodes change.

In per-link monitoring, one probe is assigned to test one
specific link in the network. Per-link-based LLF does not have
the above-mentioned issues and may be a good alternative,
because (a) the probe-packet size is typically very small and
would likely consume only a small portion of the total network
capacity and (b) it supports multi-link failure detection. The
drawback of using per-link based LLF methods is that a fairly
high amount of probe packets may be needed. To mitigate this
problem somewhat, per-link-based LLF methods could deploy

multiple monitoring nodes, so that the localization process
could be split into k£ non-overlapping groups.

There are two different types of per-link-based LLF, namely
proactive and reactive. Proactive localization uses a heartbeat
protocol, such as BFD, to test the link periodically. In a
reactive mechanism, the data-plane is waiting for a signal from
a monitoring node to test the link and to report it back to the
monitoring node.

In this paper, we present and compare several methods to
localize link failure at the physical layer. In particular, our
main contributions are as follows:

o We propose several per-link-based LLF methods, since no

such methods currently exist for LAG-based networks.

o« We compare, via simulations, the per-link methods to
correlated-paths methods, based on five Key Performance
Indicators (KPI’s).

The following KPI’s will be evaluated: (1) scalability, (2)
detection time, (3) localization accuracy, (4) flexibility, and (5)
applicability in the network. Scalability relates to algorithmic
complexity, the state that needs to be maintained by each
network device, communication overhead, and the extent to
which the approach is centralized. Detection time reflects the
time it takes to localize a link failure. There are two aspects in
localization accuracy: (a) the ability to localize link failure at
the physical layer and (b) the ability to localize multiple links
that fail at the same time. Flexibility refers to how quickly the
method can adjust to network changes. Network applicability
pertains to the ease/difficulty of implementing the method.

The remainder of this paper is structured as follows: Sec-
tion II proposes several SDN-based link-failure localization
approaches. Section III provides our performance evaluation.
Section IV concludes the paper.

II. SYSTEM DESIGN

In this section, we describe the design of four different kinds
of per-link-based LLF methods. We use Software-Defined
Networking (SDN), since SCMon [7] showed that an SDN-
based solution can greatly improve LLF performance. We
implement both proactive and reactive per-link-based LLF
methods for two types of data-planes (see Table I): (1) a dumb
data-plane that only follows the instructions of the controller
and (2) a smart/stateful data-plane that has the ability to keep
state about the network.

TABLE I
PER-LINK-BASED LOCALIZING LINK FAILURE METHODS.

Proactive Reactive

Dumb data-plane Combining Per-link Segment Routing
OpenFlow with | (OpenFlow-based)
BFD

Stateful data-plane | Combining BFD | Stateful flooding with ad-
with Stateful | jacent link testing
flooding

A. OpenFlow + BFD

BFD is used to test link connectivity. There are therefore
two important events that BFD can detect: an existing link goes

Controller

O~
’ 10 ’—__

b TS

Fig. 2. Any common host can become a monitoring node by sending a request
to the controller.

down, or a link comes up. However, this information is not
passed on to a monitoring node and only used by the nodes
connected to the link. Therefore, in OF+BFD, OpenFlow is
used to install flow rules that forward information on a change
in link state (it goes down or comes up) to one or more
monitoring nodes. This could be done via the shortest paths.

A variant of OF+BFD, which is the one we have imple-
mented, is that all BFD packets are sent to the controller. The
controller can then infer from unreceived packets that a link
has gone down. This approach creates more probe traffic, but
it avoids to keep state at the nodes on whether a link is up or
down.

B. Per-link segment routing

In a reactive mechanism, a probe packet is sent to a specified
node to test a link and the result is reported back to a
monitoring node. However, installing a specific flow rule for
every probe packet is not efficient. Segment routing could
be used to mitigate this problem by abstracting every node
and link in the network using a segment ID [19], [4]. The
forwarding path computation and flow rule updates for the
segment routing implementation are handled by the controller.

D:2 ID:3
Nodes SID : 102 Nodes SID @ 103
Adj SID 103102,

B 12
Adj SID 102101 Adj SID 102103
Adj SID¥103108

11

‘Adj SID 101102

Adj SID 104105,
D:1 dj SID 101106

Nodes SID : 101

ID:4
Nodes SID : 104
4

Adj S 108103
Adj SID 105104 Adi SID 105104
15
% Adj SID 106105

ID:5
Nodes SID : 105

Adj SID 106101

Nodes SID : 108

Test link 11 = [102, 102101, 104, 104001]

Fig. 3. An example segment ID sequence to test link L1.

The segment routing implementation must implement node
Segment IDs (node SIDs) and adjacency Segment IDs (Adj
SIDs) to support LLF. Every host, in principle, could test every
link in the network by inserting a sequence of 4 SIDs into the
header of a probe packet. The sequence of 4 SIDs is as follow:
[Node SID of the target node (N0), Adj SID of the link
(L_Adj) to be probed, Node SID of the node (Na) adjacent

to the monitoring point, and Adj SID of adjacent link between
the monitoring point and the adjacent node (M N_Adj)]. NO
could be any of the two end-points of the link to be probed.
We need Na and (M N_Adj) in order to be able to send the
probe back to the monitoring point. Fig 3 provides an example
of this configuration.

Per-link segment routing LLF does not require SDN and
could rely on IS-IS or OSPF instead. To compute the monitor-
ing paths, a translation algorithm is used to convert topological
link information into a correct sequence of SIDs and set
subtraction is used to localize multi-link failures (Algorithm
1).

The drawback of this method is that it relies on external
processes to route the probe packets. If these routes are
affected by a link failure, it could take some time to converge
to a new routing state, which could delay the process of
localizing the failure.

Algorithm 1 PerLinkSegmentRouting

1: procedure INIT(G, Na,inPort)
2: PP + null

3: for each Node N in G do

4: N.segment_routing < enable

5: for each Link L in G do

6: pp.id =L

7: NO_sid = Node_STD[L|0]]

8: N1_sid = Node_SIDI[L[1]]

9: L_Adj = Concat(NO,N1)

10: Na_sid = Node_SID[Nal]

11 MN_Adj = Concat(Na,inPort)
12: pp.label = [NO_sid, L_Adj, Na_sid, M N _Adj]
13: PP« pp

14: Return PP

15: procedure LOCALIZE(G, PP)
16: AL < null

17: RL < null

18: LF < null

19: for each Link L in G do

20: AL < L

21: for each probe_packet pp in PP do
22: send(pp)

23: while not timeout do

24: if receive(pp) then RL < pp.id

25: LF = AL — RL
26: Return LF

C. Stateful flooding

A stateful data-plane is defined as a data-plane equipped
with a state machine to work smarter than non-stateful data-
planes. The state machine could be implemented in various
ways, e.g. by keeping a certain value as the state for a specific
flow table [9], [10], or by being able to install or delete a
new flow rule based on an incoming packet (instead of per
controller instruction), such as in OpenVSwitch [16].

0

1 '5,
ingress[9999] : 0 ingress[9999] : 0
e i b
egress(9999] : N,y i 4/ ingress(9999] :0

ingress[9999] : 1

ingress(9999] : 0

’ a
1 10 egress[9909]:1 , = ~ '5,
i 4 2

7 / .
9999 = = = = = e° -] ingress[9999] : 1 °
.
egress[9999] : 3 ’ es[9999] 2
;@/4 ingress[9999] : 1

ingress(9999] : 0

ingress[9999] : 1

2)

3)

’ / .
10 ogressionse) : 1 i T
i hid
9999 <€ - - - - @° s
\
egress[9999] : ‘I

ingress[9999] : 1

4
ingress[9999] : 1 °

L
egress[9999] : 2
ingress[9999] : 1

4

& A
i1 ir 4

Fig. 4. Localization steps using stateful flooding: 1) initial phase, 2) discovery
phase, 3) Testing phase, 4) Reporting phase.

Stateful flooding works by flooding the network using a
single probe packet to install a new state into the data-plane
of every node. The state is used to construct reporting paths
to monitoring nodes without intervention of the controller.
For every unique probe packet that is received by the data-
plane, there are two states that must be installed: a visited
state in the ingress table and a shortest-path state in the egress
table. The visited state prevents the probe packet from looping
by dropping the probe packet at the second encounter. The
shortest-path state keeps the interface number that received
the probe packet for the first time. This number will later be
used as a destination port to forward the probe packet back to
the monitoring node (Fig. 4).

In a proactive mechanism, the probe packet acts as a beacon
to install forwarding paths from every node’s data-plane to
the monitoring node. The incoming BFD packet will use the
installed forwarding path to report link status to the monitoring
node.

In a reactive mechanism, the probe packet not only acts as a
beacon to install the reporting paths, but also acts as a trigger
for every node to start the link testing. The data-plane of the
receiving node will make a copy of the probe packet, by using

Algorithm 2 Stateful Flooding
1: procedure INIT STATE(N)

Ingress state < null

Egress state < null

procedure ADVERTISE(N, Probe,inPort)
if State for Probe.id is not set then
Ingress state<— ¢d
Egress state<— inPort
Reflood Probe()
Send link_test()
10: procedure SEND LINK_TEST(NN, Probe)
11: for each Interface I f in N, [f # inPort do

R U R o

12: Probe.label < N.id + Probe.id
13: Probe.mode < link_test
14: send Probe to If

15: procedure RECEIVE LINK_TEST(N, Probe, inPort)
16: Probe.label + N.id + inPort

17: Probe.mode < report

18: send Probe to inPort

19: procedure RECEIVE REPORT(NN, Probe)
20: forward Probe to Egress table

21: send probe to Interface[Egress State]

22: procedure LOCALIZE(G, Probe)
23: AL,RL,LF + null
24: for each Link L in G do

25: AL <+ L

26: send a probe packet

27: while not timeout do

28: if receive Probe, Probe.mode = report then
29: RL <+ Probe.label

30: LF = AL — RL example

31: Return LF

32: procedure INIT BFD(G)

33: for each Node N in G do

34: for each Interface If in NV do

35: If.bfd <— enable

36: procedure RECEIVE BFD(V)

37: Probe.label < N.id + inPort

38: forward Probe to Egress table

39: send probe to Interface[Egress State]

a group bucket, and will modify the probe packet mode to a
link_test packet (MPLS TC = 1). It then floods the testing
packet to all adjacent nodes and waits for their responses. The
adjacent nodes must embed their ID and incoming port into
the testing packet before sending it back to the sender. After
returning, the testing packet mode will be changed into a report
mode (MPLS TC = 2) and then be forwarded to the egress
table. By using the state value stored in the egress table, the
probe packet can be forwarded from one node to another until
it arrives back at the monitoring node (Algorithm 2).

The advantage of stateful flooding is that it quickly reacts
to link failures by avoiding them during state installation.
The obvious disadvantage is that it needs to maintain state,

the amount of which is limited by the available memory. To
solve this problem, our implementation limits the number of
requesters to a specified number m. This means that at any
time there are at most m monitoring nodes. Each monitoring
node has its ID in the range of 10000 to 10000 + m, stored as
an MPLS label. For m = 10, the maximum number of state
that must be kept in the data-plane of every node is 2xm = 20.

III. EVALUATION

Our evaluation focuses on the following KPI's: Scalability,
Detection time, Accuracy, Flexibility, and Applicability. We
conduct both a theoretical evaluation as well as an empirical
evaluation. The empirical evaluation is based on experiments
using Mininet [15], the Ryu SDN controller, OpenVswitch
[16], and ofsoftswitch13 [9]. The topologies used are Surfnet
[3] and those of the Rocketfuel project [21].

The LLF methods used in our evaluation are limited to
those that are able to localize link failure in aggregated
links (LAG). We consider three correlated-paths LLF methods:
TABM [12], SCMon [7], and a novel method proposed by
us, called SPTree, which is introduced in the Appendix. We
will compare them to our proposed per-link LLF methods:
Combining OpenFlow with BFD (OF+BFD), Per-Link Seg-
ment Routing (PLSR), Stateful Flooding (SF), and combining
Stateful Flooding with BFD (SF+BFD).

A. Method scalability

The scalability of LLF methods is determined by four major
factors: algorithmic complexity, amount of state that must be
kept, the number of probe packets needed, and the measure
of centralization (or single point of failure). Table II provides
a high-level overview.

TABLE II
SCALABILITY COMPARISON OF LLF METHODS.
LLF Algorithm States Probe SPoF
methods [Complexity] packets
TABM Set cover problem | High Low No
[NP Complete]
SCMon All-pairs shortest | None Low, No
Path [O(EV + depends on
V20ogV)] k
SPTree Single source | None E—-V+1 | No
shortest path
[O(E + ViogV)]
OF+BFD | Single source | None 2% E/m Yes
shortest path
[O(E + ViogV)]
PLSR Simple translation | None 2% E/m Yes
[O(V)] /No
SF No computation 2% m 2% E/m No
SF+BFD | No computation 2% m 2% E/m No

TABM is the least scalable LLF method considering the
high computation demands to compute monitoring paths and
high amount of state required (equal to the number of monitor-
ing paths). SCMon scales best, since it has a simple algorithm
(all-pairs shortest-path), no state to be maintained, and a small
number of probe packets. SPTree has similar scalability as
SCMon, except for the amount of probe packets used.

All of our per-link methods require a fairly high number of
probe packets. However, since they support multiple monitor-
ing nodes, this can be mitigated.

In stateful flooding, the amount of state is related to the
number of monitoring nodes and not to the network size.

A Single Point of Failure (SPoF) may thwart the scalability
and result in complete failure of the localization process. When
the central node or link to this node is lost or broken, the entire
localization process will not work. OF+BFD and PLSR use a
centralized controller [4], [19] and thus have a SPoF, unless
multiple controllers are used. PLSR. which is based on IGP
routing, does not have a SPoF.

B. Localization time

Localization time consists of two factors: localization la-
tency and localization frequency. Localization latency deter-
mines how fast the localization process finishes. Localization
frequency means how often the localization can be repeated
to yield a stable and correct result.

In single link failure localization, localization latency and
frequency have the same value. The next round of localiza-
tion can only start if a specific time window (localization
frequency) has passed.

In multi-link failure localization, localization latency and
frequency may differ, considering that the localization process
depends on an external path computation that may not update
the paths quickly after a link failure has occurred. Since the
correlated-paths LLF methods are unable to perform multi-
link failure localization for LAG networks, we consider only
per-link LLF when evaluating localization frequency.

There are three factors that determine localization latency:
(1) correlation methods, (2) length of monitoring paths, and
(3) links delays. There are two possible correlation methods
to localize link failure, namely probabilistic and deterministic
methods. Probabilistic methods are used in absence of the
data-plane ability to steer packets through a certain interface.
The selected interface is chosen using a hash-table to randomly
select the interface. As a result, we need to gather some
adequate amount of data and do some probabilistic analysis
to conclude if the link is down. In deterministic methods, we
send the probe packets through a certain interface and hence
we can exactly determine the location of a link failure by
analyzing the path taken by the probe packet. TABM [12] uses
a probabilistic method and the other methods are deterministic.

In this paper, considering that the compared methods use
different kinds of software switch and have different mecha-
nisms in forwarding the probe packet, we need to characterize
the inner latency (IL) of the data-plane in forwarding a probe
packet.

Fig. 5 show the inner latency of the methods for some linear
topologies using zero link delay configuration.

Internal latency of LLF methods highly depends on the type
of data-plane. The OpenVswitch data-plane has a very fast
flow rule processing. LLF methods that use the OpenVSwitch
data-plane (OF+BFD, SF+BFD, SPTree, SCMon) have a
nearly flat latency. The internal latency is not affected by the

Internal latency comparison
25

20 /

Latency (ms)

1: //
/

T T T T T T T
4 8 12 16 20 24 28 32

Number of nodes

—-+PLSR -=-SF SF+BFD -<OF+BFD —+SPTree SCMon

Fig. 5. Internal latency comparison of LLF methods.

length of hops. On the other hand, the internal latency of PLSR
and SF methods, which are implemented using ofsoftswitch13
[9], display a linear increase according to the length of the
path. In PLSR, stateful flow rules are always fixed and are
only reinstalled when there is a topology change. In SF, the
stateful flow rules are installed at each probing session. As the
result, SF has a longer internal latency compared to PLSR.

Since the measurements were done with mininet, our results
should be seen as an indication of the latency. Experiments on
a real testbed would be needed to gain a better insight.

Table III shows the comparison of localization frequency
for each per-link LLF method.

TABLE III
LOCALIZATION FREQUENCY OF MULTI-LINK FAILURE IN PER-LINK LLF
METHODS.
LLF Localization frequency
Methods
OF+BFD | 5 seconds (OpenvSwitch [16]
PLSR 5 seconds (Controller based [16]), 40 sec-
onds (IGP routing convergence time [20],
[14])
SF < 50 ms
SF+BFD | < 50 ms

C. Flexibility

In correlated-paths localization, computing monitoring
paths, such as P-cycles, may be hard, which means that
adjusting to topology changes would be hard as well. Per-link
localization methods rely on simple shortest paths computa-
tions. And in stateful flooding no computation is needed, since
it is automatically constructed. Table IV shows the flexibility
parameter for each per-link LLF method.

In OF+BFD, network changes have to be handled by the
controller. In segment routing methods, the shortest paths are
calculated by the IGP routers. However IGP routing needs a
convergence time ¢ to adapt to changes. Stateful flooding finds
shortest paths by keeping state and flooding. Hence, moni-
toring nodes do not require any information about topology

TABLE IV
FLEXIBILITY PARAMETER IN PER-LINK LOCALIZATION METHODS.

Parameter BFD+OF Per-link SR SF(+BFD)

Change of network | shortest path | shortest path | No

topology computation computation computation
(IGP Router)

Information update | manually to | manually to | No need

of topology change | controller monitoring

nodes
Change monitoring | shortest path | No @ 1 seconds
node location computation computation
Addition of a new | shortest path | No No
monitoring node computation computation computation

changes. However, the location of monitoring nodes cannot
be moved before state timeout, which is at least 1 second.

D. Applicability

The applicability aspect indicates to what extent the LLF
methods can be implemented in various types of networks.
We consider four different types:

o All-optical network

o Ethernet network

o SDN-enabled network

¢ SDN-enabled network with programmable data-plane

An all-optical network has limited packet switching flexi-
bility. Packet forwarding usually is achieved by constructing a
tunnel using RSVP-TE or MPLS LDP protocols. This property
limits the way to localize link failures. If a probe packet must
be sent through a certain path, a tunnel has to be constructed
for that path. An Ethernet network has better packet switching
and forwarding flexibility than an all-optical network, such as
IGP routing. Even though SDN can be considered a promising
way of networking, most existing network devices do not
support SDN protocols such as OpenFlow. Segment routing
based LLF methods can be implemented by extending IGP
routing protocols, therefore it has better applicability. It is
easier and cheaper to upgrade the firmware of devices rather
than to replace them with new ones that support OpenFlow.
Stateful flooding requires a very specific data-plane to keep
or memorize the states, which limits its usage in today’s
networks.

IV. CONCLUSION

A summary of our KPI analysis is presented in Table V.

TABLE V
KPI ANALYSIS SUMMARY OF LLF METHODS

Parameter TABM| SCMon| SPTreq OFBFD | PLSR | SF(+BFD)
Scalability ++ ++ + ++ +++ +++
Latency + +++ +H++ | o+ |
Accuracy ++ ++ ++ ++++ A+ |
Flexibility + ++ +++ ++++
Applicability | ++++ | +++ +++ ++ +++ +

Per-link LLF methods have the upper hand in terms of
localization latency. They have better latency than most other
LLF methods, except SPTree, which uses a shortest path tree.

By using a shortest paths tree, the longest time to forward
packets is the longest propagation time from monitoring node
to the furthest nodes in the network, which is equal to the
diameter of the network, which is likely shorter than the cycles
used in correlated-paths methods.

Per-link LLF methods have better accuracy, considering that
they are able to localize multi-link failures at the physical layer
(LAG implementation). Even though most of them are unable
to localize multiple link failures in a short time, they are still
useful to localize permanent link failures, such as fiber cuts
or broken interfaces. Stateful flooding is the only method that
is able to localize multi-link failures in a very short time.

Correlated-paths LLF methods have better applicability,
since they can be implemented in any type of network. Per-
link LLF methods require specific network protocols, such as
segment routing, OpenFlow, or stateful data processing.

Our KPT analysis shows that there is no overall winner. Each
method has its own strengths and weaknesses.

REFERENCES

[1] Core-netwerk, regioringen en stadsringen.
https://www.surf.nl/themas/netwerk/core-netwerk-regioringen-en-
stadsringen/index.html. Accessed: 2017-02-08.

[2] Ieee 802.3ad link bundling.

[3] The internet topology zoo.
2017-02-22.

[4] Onf’s spring-open project.

[5] Open-nfp.

[6] Rachna Asthana, Yatindra Nath Singh, and Wayne D Grover. p-cycles:
An overview. [EEE communications surveys & tutorials, 12(1), 2010.

[7]1 Francois Aubry, David Lebrun, Stefano Vissicchio, Minh Thanh Khong,
Yves Deville, and Olivier Bonaventure. Scmon: Leveraging segment
routing to improve network monitoring. In Computer Communications,
IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
on, pages 1-9. IEEE, 2016.

[8] Manav Bhatia, Mach Chen, Marc Binderberger, Sami Boutros, and Jef-
frey Haas. Bidirectional forwarding detection (bfd) on link aggregation
group (lag) interfaces. 2014.

[9] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cas-
cone. Openstate: programming platform-independent stateful openflow
applications inside the switch. ACM SIGCOMM Computer Communi-
cation Review, 44(2):44-51, 2014.

[10] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev., 44(3):87-95,
July 2014.

[11] P4 Language Consortium et al. Behavioral model (bmv2).

[12] Nicolas Guilbaud and R Cartlidge. Localizing packet loss in a large and
complex network. In Proc. NANOG, volume 57, 2013.

[13] Timothy Adam Hoff. Extending open vswitch to facilitate creation of
stateful sdn applications.

[14] Kireeti Kompella and Yakov Rekhter. Ospf extensions in support of
generalized multi-protocol label switching (gmpls). 2005.

[15] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks, page 19.
ACM, 2010.

[16] Ben Pfaft, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin
Shelar, Keith Amidon, and Martin Casado. The design and implementa-
tion of open vswitch. In Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation, NSDI'15, pages 117—
130, Berkeley, CA, USA, 2015. USENIX Association.

[17] Stefano Previdi, Martin Horneffer, Stephane Litkowski, Clarence Filsfils,
Bruno Decraene, and Rob Shakir. Source packet routing in networking
(spring) problem statement and requirements. 2016.

http://www.topology-zoo.org/. Accessed:

[18] JD Case M Fedor ML Schoffstall and C Davin. Rfc 1157: Simple
network management protocol (snmp). IETF April, 1990.

A Sgambelluri, F Paolucci, A Giorgetti, F Cugini, and P Castoldi. Sdn
and pce implementations for segment routing. In Networks and Optical
Communications-(NOC), 2015 20th European Conference on, pages 1—
4. IEEE, 2015.

Henk Smit and Tony Li. Is-is extensions for traffic engineering. 2008.
Neil Spring, Ratul Mahajan, and David Wetherall. Measuring isp
topologies with rocketfuel. ACM SIGCOMM Computer Communication
Review, 32(4):133-145, 2002.

Neil Spring, Ratul Mahajan, and David Wetherall. Measuring isp
topologies with rocketfuel. ACM SIGCOMM Computer Communication
Review, 32(4):133-145, 2002.

Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivas-
tav, Nate Foster, and Hakim Weatherspoon. P4fpga: A rapid prototyping
framework for p4. In Proceedings of the Symposium on SDN Research,
pages 122-135. ACM, 2017.

Bin Wu, Pin-Han Ho, and Kwan L Yeung. Monitoring trail: On fast

[19]

[20]
[21]

[22]

[23]

[24]

link failure localization in all-optical wdm mesh networks. Journal of

Lightwave Technology, 27(18):4175-4185, 2009.

APPENDIX
A. Shortest-path tree (SPTree) LLF

SPTree consists of three phases: path mapping, probing, and
correlation. Path mapping will only be computed once the
topology is changing. The probing phase is when all probe
packets are sent concurrently or almost at the same time.
The correlation phase is when all received probe packets are
analyzed or correlated to determine the exact location of a
link failure. At every monitoring interval, probe packets are
sent through their respective precomputed paths. In the next
interval, the correlation process for the previous interval is
executed and probe packets for the current interval are sent
out. Therefore, the link failure localization response is equal
to the probing interval. A more detailed explanation of each
phase will be described in the following.

1) Path mapping

In this phase, path mapping is computed using single-
source Dijkstra’s shortest paths algorithm. The purpose
is to find the main paths and shortcut links. The main
paths are the shortest paths to all nodes. Shortcut links
are the remaining unchosen links (not present in the
shortest paths tree). In Fig. 6, there are 3 main paths:
(3,2,1),(3,6,7), and (3, 4, 5) and two shortcut links:
(1-6) and (6-5).

Fig. 6. Simple network and its shortest paths representation.

The shortest path tree is only able to determine link
failure if all nodes in the network are connected to
at least three adjacent nodes. In case a node has one
adjacent link (node 7) or two adjacent links (node 1, 2,
4, and 5), an additional probe packet is needed to exactly
pinpoint the failure at those links.

To create stack information for each probe packet, we
construct the SID stack as follows. If a link, L1, connects
two nodes (A and B), so that L1 = (A, B), the structure
of the segment stack is: [node SID of A, adjacency
SID of (A,B), node SID of MP]. For every recorded
additional node (AN), create an additional probe packet
and construct its stack by combining node SID and
monitoring point SID: [node SID of AN, node SID of
MP].

Algorithm 3 Path mapping Algorithm(G)
1: All links (AFE) + G.links()
2: Node degree (N D) < ComputeDegree(G.nodes())
3: Monitoring Point (M P) < N D[0]
4: Additional Nodes (AN) < Vn € ND, degree == 1 or
degree ==
: Shortest path (SP) + DijkstraShortestPath(G)
: Probe packet (PP) < null
: Vlink € AE, link ¢ SP:
a) stack < null
b) stack <— Nodes_SID(link[0])
c) stack « Adj_SID(link[0],link[1])
d) stack « Nodes_SID(MP)
e) PP «+ stack

8: VYnodes € G.nodes():
a) PP <+ [Nodes_SID of node, Nodes_SID of MP]
9: return PP

~N O\ W

Fig. 7. Simple IGP weighting using main path and adjacency links dichotomy.

In our solution, link cost in the main path can be set
to any number, as long as the total sum of the costs
for every branch to the leaf node is lower than the
cost of adjacent links. For example, in Fig. 7, we set
link cost for every adjacent link with maximum number
65355. By using this configuration, the main path, or
the shortest path between one node to others, is always
consistent.
2) Probe forwarding

Probe packet forwarding is executed at a very short
interval (50 ms) to enable dynamic link failure moni-
toring. At every iteration, each probe packet which is
already preset with its respective stack information, is
sent by the monitoring point. This monitoring point
broadcasts probe packets depending on the top most
label stack. The other nodes will forward the packet
based on the segment ID stored in the MPLS stack. The

last destination of all probe packets is the monitoring
point. We use a single monitoring point to simplify the
correlation procedure.

3) Correlation Procedure

At the initialization phase, we compute the set of links
used by every probe packet and then use them to assign
every link a unique combination of probe packets. Every
probe packet which uses link A as its probing path
will be used by link A as its set of probe packets.
Localization is performed by comparing the unreceived
probe packets with the set of probe packets owned by
every link. If all probe packets in the set are unreceived,
the link can be assumed to be failed.

Algorithm 4 Initialization Algorithm (PP)

1:
2:

All links (AFE) < G.links()
Vprobe € PP:

a) “set of links” + null
b) Viabel € probe_stacks:

i) “set of links” < Setof Link AtSegment(label)
¢) matrix value at row[probe] < set of links”
Viinks € AE:
a) set of probe packets of link <— SumO fColumn(link)

Algorithm 5 Localization Algorithm(unreceived PP)

1:
2:
3:

uPP < unreceived_PP
List of link failure (LLF) < null
Viink € AE:

a) if all probe packets € uPP:
i) LLF < link
return LLF

