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1 Motivation for open-networking

Traditionally, networking equipment used to be a locked-in hardware with vendor’s pro-
prietary software installed. However, recently the trend of opening this ecosystem is
becoming more and more popular.

Networking vendors allow the installation of other operating systems and software on
their devices. This gives more power to network administrators, allowing the customiza-
tion of the device according to their specific needs. Secondly, it also opens the possibility
of running unified network operating system and networking daemons across the devices
from various vendors.

There are a couple of commercial NOS distributions targeting white-label switches
(e.g. Cumulus Linux1 or PicaOS2). Generally, they are based on Linux operating system
and for the purposes of control-plane also open-source software could be used. Never-
theless, the NOS itself remains proprietary and closed-source. In the opposition to this
trend, there are also open-source NOS projects available. They constitute an alternative
for users wanting to exchange and adjust the system to their requirements. Moreover,
allowing to avoid the licensing costs of using commercial NOSes.

In this research we aim to answer the following questions:

1. Is it feasible to use a white-label, open-source based switching stack for a traditional
deployment requiring basic L2 and L3 functionalities?

2. Are there any performance related differences between open-source NOS imple-
mentations?

1https://cumulusnetworks.com/products/cumulus-linux/
2http://www.pica8.com/products/picos
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2 Architecture background

In this section, we discuss the components which can be identified in the white-label
network stack, where Figure 1 gives the overview on this. Starting from the bottom,
there is a hardware layer representing the actual device i.e. Network Processing Unit
(NPU), interfaces, sensors, etc. It later gets discovered and handled by a lower-level
layer, which signifies the drivers and other components residing in the space of network
operating system. Next, for the actual interaction with the NPU device, the abstraction
layer is placed. Lastly, to realize the network devices features (e.g. routing protocol
operations, configuration) the management and control-plane applications are used.

Figure 1: White-label networking stack logical structure

2.1 NPU communication

To program the NPU, there can be two generic approaches possible: (1) using NPU’s
SDK, (2) using a “proxy” component which will handle the NPU communication on
behalf of the application. Generally, the former is not present in the design of open-
source white label stacks, as it would require re-adjusting the applications to every new
change in SDK. Following the second approach, there have been two ways established:
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• Switch Abstraction Interface (SAI)

• switch-dev

SAI

SAI develops an abstracted interface over SDKs provided by NPU vendors used in white-
label switches (e.g. Broadcom, Mellanox). This approach allows the NOS developers to
focus on a compatibility with SAI’s API without the need to adjust to SDK changes or
even a completely new NPU vendor.

switch-dev

Switch-dev is a project aiming to contribute open versions of NPU drivers to the Linux
kernel code. The vision is to perform all NPU communication inside the kernel space,
so that the standard Linux interfaces (CLI, netlink API) can be used to change NPU
state.

2.2 ASIC control module

The role of ASIC control module could be characterized as three activities: (1) interfac-
ing with control-plane apps, (2) maintaining the state of the desired configuration, (3)
communicating with an NPU (for example using SAI). On the second page of SAI speci-
fication [1] it can be seen that authors explicitly define the requirement for such compo-
nent, additionally specifying rudimentary features it should implement. The examples of
ASIC control module implementations can be found in open-networking systems such as
OpenSwitch (OPX) and SONiC. Those are implemented as sets of processes cooperating
with each other according to the publish/subscribe communication scheme.

Message passing architecture

The concept of message-based asynchronous process communication is a key design prin-
ciple for the analyzed network operating systems. It is also one of the attributes of
Erlang1 programming language which has been designed with a telecom-grade high reli-
ability in mind. Erlang provides language level paradigms for message passing, enforcing

1http://www.erlang.org/
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process communication to be realized only in this manner. Such approach allows for high
process isolation and as a consequence, it results in a fact that “a software error in a con-
current process should not influence processing in the other processes in the system” [2].
A similar solution appears to be empowering Arista EOS2 network operating system. A
central database component (Sysdb) is used for inter-process message exchange between
EOS individual components [3]. The analysis of middleware subsystems of Azure SONiC
and OpenSwitch reveals that Redis3 message-queue is used to realize similar objectives
as outlined for Erlang and EOS.

2https://eos.arista.com/
3https://redis.io/
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3 Network Operating Systems (NOS)

3.1 Open Networking Linux (ONL)

ONL is a project hosted by the Open Compute Project1. As the name implies, it is a
Linux distro suited for installation on the network devices. Authors add the support for
a specific hardware used in a particular model. This provides the foundation for starting
to use the given platform, however, it lacks higher-level components which are the key
part of fully usable network device. Most importantly, it is left to the user how to handle
the communication with the NPU.

3.2 OpenSwitch (OPX)

The current version of OpenSwitch is actually the second generation of this project. The
first one, sponsored mainly by HPE (Hewlett-Packard Enterprise) has been discontinued.
The two main contributors are Dell (providing the actual NOS layer) and SnapRoute
(FlexSwitch control-plane). At the moment of our evaluation, there were no official
project images available. However, the images offering Dell S6000-ON switch support
were available at one of the repository pages2. The inspection of the images revealed that
the control-plane stack was not included as the project work was wrapping up. However,
it was possible to access FlexSwitch source code (opx-flxl* repositories in OPX github
project).

1http://www.opencompute.org/
2https://github.com/open-switch/opx-docs/wiki/Install-OPX-Base-on-Dell-S6000-ON-platform
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Figure 2: NAS design3.

OPX is based on Debian operating system combined with the abstraction layer compo-
nents and utilities developed by OPX project participants. As illustrated in Figure 2, the
component ingesting the intended configuration is Control Plane Service (CPS). Next,
Network Adaptation Service (NAS) is responsible for translating the configuration to the
set of NPU commands and communicating those using SAI interface. Table 1 (taken
from [4]) lists the available features. The important fact is that not all of them are
configurable with the means of using standard Linux network utilities. The operations
which are simply not present there need to be performed through CPS API.

3https://github.com/open-switch/opx-docs/raw/master/images/nas_design.png
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Networking Feature Configure with Linux Commands
or Open Source Application Configure with CPS API

Interfaces
Physical Yes Yes
Link Aggregation (LAG) Yes (Bond) Yes
VLAN Yes Yes
Fanout (4x10G) No Yes (script)
Layer 2 Bridging
LLDP Yes No
MAC address table No Yes
STP Yes Yes
VLAN Yes Yes
Layer 3 Routing
ECMPv4 Yes Yes
ECMPv6 Yes Yes
IPv4 Yes Yes
IPv6 Yes Yes
Unicast routing Yes Yes
QoS No Yes
ACLs No Yes
Monitoring
Mirroring No Yes
sFlow No Yes
Port and VLAN statistics No Yes

Table 1: Selected supported Dell OS10 networking features.

3.3 SONiC

SONiC is an abbreviation for Software for Open Networking in the Cloud. It is a NOS
by Microsoft Azure used to empower the network operations, however, the scale of its
deployment is non-public. Table 2 outlines the features listed in the official SONiC’s
roadmap [5]. Based on that, it can be concluded that SONiC aims at building a BGP
empowered Layer 3 fabrics than traditionally switched Ethernet network.
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Networking Feature
BGP
ECMP
LAG
LLDP
QoS - ECN
QoS - RDMA
Priority Flow Control
WRED
COS
SNMP
Syslog
Sysdump
NTP
COPP
DHCP Relay Agent
SONiC to SONiC upgrade
Multiple Images support
One Image
ACL permit/deny
IPv6
Tunnel Decap
Mirroring
Post Speed Setting
BGP Graceful restart helper
BGP MP

Table 2: SONiC supported networking features

Similarly to OPX, SONiC is also working on top of Linux. SONiC’s architecture is
depicted in Figure 3. Its core design principle is to isolate each component into a separate
Docker container. The center of a system is Orchestration Agent (OrchAgent) which
fetches the unified configuration and converts it to particular SAI API commands. Those
are further picked up by syncd daemon, which directly handles the NPU programming
process.
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Figure 3: SONiC Architecture4

4https://github.com/Azure/SONiC/wiki/Everflow-High-Level-Design
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3.4 Broadcom NPU interface access

The SAI specification assumes the ability to expose the NPU’s internal interface to a
switch user. This feature is available on SONiC and OPX.

The utilities allowing the switch communication are effectively opening a UNIX socket
to the SAI’s kernel module interface, proxying all the commands to the NPU. The OPX
version of the tool is called opx-switch-shell, whereas SONiC one is bcmcmd.

This feature is particularly useful for the verification of the control-plane operations and
observing if an intended state is actually reflected in the NPU state. The downside of
it is that there is no publicly available manual for all available commands. Therefore, a
user is limited to the brief descriptions visible in the NPU help menus.
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4 Control-plane stacks

4.1 Quagga/FRR

Quagga1 is a routing suite implementing a handful of routing protocols. Specifically,
OSPF and BGP for both the IPv4 and IPv6 protocol versions.

Additionally, it is also worth to note Quagga’s fork called Free Range Routing2 (FRR).
Among sharing the features of its predecessor, FRR focuses on faster development pace
and new features. In specific, BGP improvements for the data center fabric environments
and new protocols (i.e. EIGRP or LDP). FRR is a routing suite shipped with Cumulus
Linux, commercial NOS for network devices.

4.2 BIRD

BIRD Internet Routing Daemon (BIRD3) aims to be an alternative to the Quagga suite.
As its competitor, it is capable of running BGP and OSPF protocols for both versions of
the IP protocol. Its modular design enables the possibility to run multiple instances of
the same routing protocol making it better suited for multitenant deployments requiring
a higher-level of isolation.

4.3 Flexswitch

FlexSwitch is the suite of network protocol implementations from SnapRoute company.
SnapRoute contributed with a former versions of FlexSwitch utilities to OPX project4.
Among many features, it claims to support STP, LACP as well as routing protocols such
as OSPF or BGP. As of the moment of writing FlexSwitch has not been integrated into
OPX system image.

1http://www.nongnu.org/quagga/index.html
2https://frrouting.org/
3http://bird.network.cz/
4https://github.com/open-switch/opx-flxl2, https://github.com/open-switch/opx-flxl3
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5 Method

Our research consisted of three main parts:

• Preliminary phase

• Feature tests

• FIB (Forwarding Information Base) installation latency test

5.1 Preliminary phase

This part involved analyzing the available open-source networking software (described
in Chapters 3 and 4) and establishing the testbed allowing to perform the evaluation.
The criteria were that the NOS sources should be open-source and offer the support
for white-label switches available in SNE OpenLab testbed. Ultimately, we decided to
focus on two NOS distributions — OpenSwitch (OPX) and SONiC, followed by BIRD
and Quagga for control-plane routing features. The final configurations are outlined in
Table 3.

Vendor Model NOS Build version
Dell S6000-ON SONiC 201705
Dell S6000-ON OPX 2.1.0(0)
Dell S4048-ON OPX 2.1.0(0)

Table 3: Used hardware and NOS versions installed
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5.2 Feature tests

We have synthesized the list of rudimentary features which we consider important for a
regular data-center switch:

• Configuration and management (CLI/API, LLDP, DHCP relay)

• Layer 2 features (VLAN, STP, LAG)

• Layer 3 features (OSPF)

In the following subsections, we discuss our approach regarding each test. In order to
perform the evaluation, the switches were interconnected as illustrated in Figure 4. This
was the topology which allowed us to evaluate all of our established scenarios, without
the need to re-adjusting it for every test.

Figure 4: Physical topology used in feature test phase.

Configuration and management

CLI & API

We looked at the methods allowing to deploy configuration on a switch. First, we ana-
lyzed CLI, with the focus on what can be achieved with it i.e. configuration, verification.
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Moreover, we also looked at the methods for applying a configuration in a persistent
manner. Lastly, we examined configuration interfaces on the switch allowing for pro-
grammatic device configuration supporting tasks such as automation.

Link Layer Discovery Protocol (LLDP)

We checked if LLDP messages are properly exchanged between a pair of the devices.
Additionally, verifying if the information contained in LLDP messages corresponds to
the actual config.

Dynamic Host Configuration Protocol (DHCP) relay

Figure 5: DHCP relay test topology setup

Similarly to LLDP, the actual DHCP functionality resides entirely in the control-plane
layer. SONiC claims officially to support it (internally it uses isc-dhcp-relay), in
OPX documentation we did not encounter any DHCP-relay related notes. However, we
manually installed ISC’s DHCP relay agent and evaluated it.

In the simple set-up (Figure 5) we used three components: DHCP client (isc-dhcp-client)
residing in 11.0.0.0/24 network, switch acting as DHCP relay agent, and DHCP server
(dnsmasq) placed in 10.0.0.0/24 network.

Layer 2 (L2)

VLAN

While testing VLAN functionality we were generally focusing on two rudimentary fea-
tures:
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• ability to set VLAN on a port (so-called “access port”)

• IEEE 802.1Q protocol support (VLAN “trunking”)

As shown in Figure 6, the approach was to create VLAN trunk between two OPX
switches, as well as between OPX and SONiC switch. Moreover, we also configured an
untagged port (VLAN 20) between OPX and SONiC devices.

Figure 6: VLAN test topology setup consisted of two tagged VLAN trunks and one
untagged VLAN port

Spanning-Tree Protocol (STP)

We tested STP operations between two switches connected with two links. First, between
two OPX switches, secondly between SONiC and OPX switches. The setup is illustrated
in Figure 7. The version of SONiC used in this research had no STP support integrated.
Regardless of this fact, we decided to see what will be the behavior of linux-bridge STP
operating without the NPU support.

Using the topology defined earlier, we tested the STP operation between two switches
interconnected with two cables. The expected result (due to the nature of STP) was
having one of those two links in a blocking state, and one of the switches operating as
an STP root bridge.

Additionally, we looked at Spanning-Tree Group (STG) mechanism support. It allows
grouping of VLANs in order to assign them to different port and bridge priorities. This
enables more effective link usage i.e. for STG1 the port can be blocking, whereas for
STG2 it will be in a forwarding state.
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Figure 7: STP test topology setup

Link aggregation (LAG)

Figure 8: Link aggregation (LAG) setup

To evaluate LAG we attempted to create link bundles between all devices in the test
setup (Figure 8). This was in the essence aggregating two physical links between each
switches pair as a single virtual port. Link aggregation feature was handled by Linux’s
bonding driver in case of OPX, and libteam1 for SONiC. To create LAG in OPX we
were using ifenslave Linux command, whereas in SONiC it is a matter of specifying
the configuration file’s PortChannel option.

1http://libteam.org/
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Layer 3 (L3)

Open Shortest Path First (OSPF)

Figure 9: OSPF setup

To test OSPF we set-up three device network, where particular S6000-ON devices were
placed in the different IP segments. Whereas, S4048-ON resided in the middle, effec-
tively having full knowledge about all configured IP networks (Figure 9). To be able
to achieve the communication between them (i.e. with ping commands), there had to
a routing information exchanged. For that purpose we setup basic, single area OSPF
neighbourship between all devices.

5.3 FIB installation latency

In order to quantitatively compare the performance of OPX and SONiC we measured
the latency of FIB route installation. Which effectively is the time it takes from receiving
a route update and offloading it to the hardware. As previously outlined in Chapter 2,
the information about a new route has to traverse multiple components before it ends
as a FIB entry in the NPU. In this test we were using two configurations:

• Dell S6000-ON running OPX+Quagga

• Dell S6000-ON with SONiC and its stock Quagga installation

As outlined in Figure 10, the switch was running BGP protocol and it was receiving
updates from an external exaBGP2 speaker combined with super-smash-brogp3 tool.

2https://github.com/Exa-Networks/exabgp
3https://github.com/spotify/super-smash-brogp
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The latter was responsible for generating test BGP network updates which were sent
to the switch. The detailed configuration of super-smash-brogp is provided in Listing 1.
To measure the amount of time (latency) of route installation, for each route update we
were capturing two timestamps:

• t1 - route update arrival as logged by Quagga

• t2 - route installation time as reported by NPU control module

Later on, t1 and t2 were subtracted resulting in a relative latency score.

Figure 10: Route installation latency setup
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---
PREFIXES_FILE: "data/v4_full_table_and_default"

NEXT_HOP: "10.0.0.34"

WAITING_TIME: 55 # Time to wait between iterations

INITIAL_WARMUP: 100 # Number of prefixes to send initially
INITIAL_WAIT: 10 # Seconds to wait initially

MAX_TOTAL: 30000

# On every iteration we will install randint(MIN_PREFIXES , MAX_PREFIXES)
# prefixes
MIN_PREFIXES: 10
MAX_PREFIXES: 50

REMOVE_PREFIXES: 1 # Percentage of prefixes to remove on each iteration

# Some parameters to add random AS PATHs to each advertisement
NUM_DIFFERENT_AS_PATHS: 100
MIN_AS_LENGTH: 0
MAX_AS_LENGTH: 5

Listing 1: Configuration file of super-smash-brogp. It was executed directly by exaBGP
(process add-routes configuration parameter) and was responsible for route
generation
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6 Results: feature tests

In the following sections we discuss details regarding performed feature related evalua-
tion. We structure the results in relation to both OPX and SONiC to clearly mark our
findings regarding each NOS.

6.1 Configuration and management

In Table 4 we present the overview of the performed tests.

Feature name OPX SONiC
CLI/API pass1 pass1

LLDP pass pass
DHCP relay pass supported, but not evaluated

Table 4: Configuration and management tests summary

CLI & API interfaces

OPX

OPX offers three general approaches to its configuration:

• using standard Linux utilities and config files (e.g. /etc/network/interfaces)
supplemented with extra commands (prefixed with opx-)

• interacting with Control Plane Services (CPS) API

• XML files read by OPX subsystems during the OS startup (detailed information
can be found in [4])

1Only subset of operations supported in the CLI
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While configuring the devices, our first approach was using the default Debian Linux
networking configuration files. Listing 2 shows a sample configuration snippet.
iface vlan100 inet static

bridge_ports none
address 2.2.2.1
netmask 255.255.255.0

allow-hotplug e101 -001-0
iface e101 -001-0 inet manual

post-up bash -c ". /etc/opx/opx-environment.sh;opx-ethtool -s e101 -001-0 speed 40000 duplex full autoneg off"
post-up ifconfig e101 -001-0 up
post-up brctl addif vlan100 e101 -001-0 || true
post-down ifconfig e101 -001-0 down

Listing 2: OPX configuration with the use of Debian configuration syntax

The switch interface required setting non-default duplex or speed values that implied
the need to use the post-up Debian configuration stanza. Even if specified correctly,
this was still not operating as expected as a persistent configuration. The NPU attached
interfaces are actually brought up several seconds after the startup of a NOS, and that
was causing edge conditions which effectively were leaving the device in an unconfigured
state. Therefore, the end configuration we ended up with was adjusting port duplex
and speed values in the phy_media_default_npu_setting.xml configuration file, com-
plemented by the configuration in the interfaces file.

SONiC

SONiC could be interacted with in the following manners:

• Similarly to OPX, with standard Linux tools or SONiC provided show and
configure commands1. Whereas the latter implements only a subset of the
available options

• Minigraph configuration file. It serves as a single point of configuration for all
switch related options. Additionally, the configuration of Quagga (providing
control-plane features) is also integrated here

• SwSS API, however is not meant for user originating configuration

In our experiments, we configured the device with the Minigraph file (/etc/sonic/config_db.json,
the configuration snippet is presented in Listing 3).

1https://github.com/Azure/SONiC/wiki/Command-Reference
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"PORTCHANNEL_INTERFACE": {
"PortChannel04|FC00::7D/126": {},
"PortChannel04|10.0.0.62/31": {},
"PortChannel01|10.0.0.56/31": {},
"PortChannel01|FC00::71/126": {},
"PortChannel03|FC00::79/126": {},
"PortChannel03|10.0.0.60/31": {}
},
"onie_config_version": "1",
"PORTCHANNEL": {
"PortChannel03": {
"members": [
"Ethernet120"
]
},
"PortChannel01": {
"members": [
"Ethernet0",
"Ethernet4"
]
},
"PortChannel04": {
"members": [
"Ethernet124"
]
}
},

Listing 3: The fragment of SONiC’s JSON configuration file

In the recent SONiC release the configuration is expressed in a JSON format (previ-
ously XML), which in turn gets translated to a particular daemon’s configuration file
(Figure 11).

Figure 11: Sonic Minigraph configuration file workflow2

2https://github.com/Azure/SONiC
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At the moment of testing, the dynamic configuration with a config load command
seemed not to be operating correctly. As a result, device restart was required to make
a new state of configuration effective.

LLDP

Both LLDP and OPX, support LLDP protocol by using lldpad application. We
were able to successfully inter-exchange LLDP information between SONiC and OPX
switches.

DHCP relay

OPX

We were able to successfully relay DHCP messages with the applied configuration. List-
ing 4 presents the output of DHCP relay daemon forwarding incoming DHCP requests
to a remote DHCP server answering the request.(Listing 5).
root@OPX -S6000-ON:/var/log# /usr/sbin/dhcrelay -d -i e101 -009-0 -i eth0 10.0.0.2
Internet Systems Consortium DHCP Relay Agent 4.3.1
Copyright 2004-2014 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
Listening on LPF/eth0/ec:f4:bb:fb:d2:f8
Sending on LPF/eth0/ec:f4:bb:fb:d2:f8
Listening on LPF/e101 -009-0/ec:f4:bb:fb:d3:19
Sending on LPF/e101 -009-0/ec:f4:bb:fb:d3:19
Sending on Socket/fallback

Forwarded BOOTREQUEST for 00:1c:73:7b:f7:5d to 10.0.0.2
Forwarded BOOTREPLY for 00:1c:73:7b:f7:5d to 11.0.0.14
Forwarded BOOTREQUEST for 00:1c:73:7b:f7:5d to 10.0.0.2
Forwarded BOOTREPLY for 00:1c:73:7b:f7:5d to 11.0.0.14
Forwarded BOOTREQUEST for ec:f4:bb:fc:1c:69 to 10.0.0.2

Listing 4: ISC DHCP relay agent running on OPX. DHCP requests arriving at e101-009-
0 interface, were forwarded to 10.0.0.2 DHCP server through eth0 interface.

[root@chicken src]# ./dnsmasq -d -i eth2 -F 11.0.0.10,11.0.0.20,255.255.255.0

dnsmasq -dhcp: DHCPOFFER(eth2) 11.0.0.14 00:1c:73:7b:f7:5d
15:44:51.179315 IP (tos 0x0, ttl 64, id 5615, offset 0, flags [DF], proto UDP (17), length 328)

10.0.0.44.67 > 10.0.0.2.67: [udp sum ok] BOOTP/DHCP, Request from 00:1c:73:7b:f7:5d, length 300, hops 1, xid 0xa6f0977d ,
secs 22, Flags [none] (0x0000)

Gateway -IP 11.0.0.1
Client-Ethernet -Address 00:1c:73:7b:f7:5d

#output omitted for brevity
15:44:51.179435 IP (tos 0xc0, ttl 64, id 48792, offset 0, flags [none], proto UDP (17), length 328)

10.0.0.2.67 > 11.0.0.1.67: [bad udp cksum f384!] BOOTP/DHCP, Reply, length 300, hops 1, xid 0xa6f0977d , secs 22, Flags [
none] (0x0000)

Your-IP 11.0.0.14
Server-IP 10.0.0.2
Gateway -IP 11.0.0.1

#output omitted for brevity

Listing 5: DHCP server listening for upcoming requests on eth2 interface and serving
addresses out of 11.0.0.10-20 range.
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6.2 Layer 2 (L2)

Feature name OPX SONiC
VLAN pass VLAN trunking not supported
STP pass not supported
LAG pass pass

Table 5: L2 tests summary

In Table 5 we outline the results of performed tests. In the following subsections we
present listings corresponding to VLAN, STP and LAG tests.

VLAN

OPX

OPX satisfied both VLAN requirements we had. We were able to configure a port as an
untagged interface, as well as, create VLAN trunk hosting multiple VLANs. In Listing 6
we present how the VLAN trunk configuration was reflected in the NPU.
root@OPX -4048-ON:~# opx-switch-shell "l2 show"
mac=ec:f4:bb:fb:d3:62 vlan=30 GPORT=0x45 modid=0 port=69/xe68
mac=ec:f4:bb:fb:d3:62 vlan=31 GPORT=0x45 modid=0 port=69/xe68

Listing 6: Broadcom NPU state showing VLANs 30 and 31 configured on the trunk port

SONiC

In SONiC configuration we were able to configure ports as untagged, however VLAN
trunking did not work. In Listing 7 it can be observed that regardless having VLANs
10,11 in the trunk configuration, those were not present in the form of NPU entries.
root@sonic:/var/log/swss# bcmcmd 'l2 show'
l2 show
mac=34:17:eb:f3:2b:05 vlan=1 GPORT=0x20 modid=0 port=32/xe31 Hit
mac=ec:f4:bb:fb:d2:f9 vlan=1 GPORT=0x2 modid=0 port=2/xe1 Hit
mac=ec:f4:bb:fc:1c:69 vlan=1 GPORT=0x0 modid=0 port=0/cpu0 Static CPU
drivshell >

Listing 7: VLAN tagging configuration was not reflected in the NPU state (all ports are
associated with VLAN 1)
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STP

OPX

In the STP domain between two OPX devices we were able to achieve successful STP
operations. Listing 8 presents the STP state on a device which has elected another device
as a STP root (S4048-ON switch). Listing 9 presents issued verification commands.
root@OPX -S6000-ON:~# brctl showstp vlan200
vlan200

bridge id 8000.ecf4bbfbd35f
designated root 8000.3417ebf32b05

#output omitted for brevity

e101 -031-0 (1)
port id 8001 state forwarding

#output omitted for brevity

e101 -032-0 (2)
port id 8002 state blocking

#output omitted for brevity

Listing 8: STP bridge state on S6000-ON it elected a remote STP root bridge as a
consequence inerface e101-032-0 is in the blocking state

root@OPX -4048-ON:~# brctl showstp vlan200
vlan200

bridge id 8000.3417ebf32b05
designated root 8000.3417ebf32b05

#output omitted for brevity

e101 -053-0 (1)
port id 8001 state forwarding

#output omitted for brevity

e101 -054-0 (2)
port id 8002 state forwarding

#output omitted for brevity

Listing 9: STP enabled bridge at S4048-ON (STP root), both its ports (e101-053-0 and
e101-053-0) are in forwarding state

In Listing 10 we show the state of STG after a bridge with VLAN 30 was configured
on S6000-ON. As can be observed, this configuration is not reflected in STG. It appears
that linux-bridge STP implementation does not implement STG. However, as stated in
OPX documentation, similar goals might be achieved by having multiple linux-bridge
instances performing separate STP cost calculations.
root@OPX -S6000-ON:~# opx-switch-shell 'stg show'
STG 0: contains 0 VLANs

Disable: xe
STG 1: contains 1 VLAN (1)

Disable:
xe1-xe3,xe5-xe7,xe9-xe11,xe13-xe15,xe17-xe19,xe21-xe23,xe25-xe27,xe29-xe31,xe33-xe35,xe37-xe39,xe41-xe43,xe45-xe47,xe53-xe55

,xe57-xe59,xe61-xe63,xe65-xe67,xe69-xe71,xe73-xe75,xe77-xe79,xe81-xe83,xe85-xe87,xe89-xe91,xe93-xe95,xe97-xe99
Forward:

xe0,xe4,xe8,xe12,xe16,xe20,xe24,xe28,xe32,xe36,xe40,xe44,xe48-xe52,xe56,xe60,xe64,xe68,xe72,xe76,xe80,xe84,xe88,xe92,xe96,
xe100-xe103

STG 255: contains 1 VLAN (4095)
Disable:

xe1-xe3,xe5-xe7,xe9-xe11,xe13-xe15,xe17-xe19,xe21-xe23,xe25-xe27,xe29-xe31,xe33-xe35,xe37-xe39,xe41-xe43,xe45-xe47,xe53-xe55
,xe57-xe59,xe61-xe63,xe65-xe67,xe69-xe71,xe73-xe75,xe77-xe79,xe81-xe83,xe85-xe87,xe89-xe91,xe93-xe95,xe97-xe99

Forward:
xe0,xe4,xe8,xe12,xe16,xe20,xe24,xe28,xe32,xe36,xe40,xe44,xe48-xe52,xe56,xe60,xe64,xe68,xe72,xe76,xe80,xe84,xe88,xe92,xe96,

xe100-xe103

Listing 10: Even though VLAN 30 was configured, it has not been reflected in the NPU’s
STG configuration
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SONiC

For SONiC-OPX setup we did not manage to achieve operational STP configuration.
The packet capture on SONiC switch (Listing 11) showed that NPU was dropping in-
coming STP frames. It can be observed that the switches did not properly detect itself
(Listings 12 and 13). Interestingly, regardless of root function, OPX device blocked one
of its ports. That effectively was preventing network loops from occurring.
root@sonic:~# tcpdump -i Ethernet0 -nnn -vvv
tcpdump: listening on Ethernet0 , link-type EN10MB (Ethernet), capture size 262144 bytes
15:24:17.878647 STP 802.1d, Config, Flags [none], bridge-id 8000.ec:f4:bb:fc:1c:69.8012, length 35

message -age 0.00s, max-age 20.00s, hello-time 2.00s, forwarding -delay 15.00s
root-id 8000.ec:f4:bb:fc:1c:69, root-pathcost 0

15:24:19.878662 STP 802.1d, Config, Flags [none], bridge-id 8000.ec:f4:bb:fc:1c:69.8012, length 35
message -age 0.00s, max-age 20.00s, hello-time 2.00s, forwarding -delay 15.00s
root-id 8000.ec:f4:bb:fc:1c:69, root-pathcost 0

15:24:21.878654 STP 802.1d, Config, Flags [none], bridge-id 8000.ec:f4:bb:fc:1c:69.8012, length 35

Listing 11: Tcpdump capture shows that neighbour device STP frames were not
delivered to the control-plane. We could only observe those originated by
SONiC switch itself

root@OPX -S6000-ON:/etc/network/interfaces.d# brctl showstp vlan20
vlan20

bridge id 8000.ecf4bbfbd2f9
designated root 8000.ecf4bbfbd2f9

#output omitted for brevity

e101 -001-0 (1)
port id 8001 state forwarding

#output omitted for brevity

e101 -002-0 (2)
port id 8002 state blocking

#output omitted for brevity

Listing 12: OPX-S6000 has elected itself as a root bridge, while surprisingly keeping one
of its ports in blocking state.

root@sonic:~# brctl showstp Vlan20 | grep -wE 'Ethernet(0|4)' -A 6
Ethernet0 (18)

port id 8012 state forwarding
designated root 8000.ecf4bbfc1c69 path cost 100
designated bridge 8000.ecf4bbfc1c69 message age timer 0.00
designated port 8012 forward delay timer 0.00
designated cost 0 hold timer 0.00
flags

--
Ethernet4 (20)

port id 8014 state forwarding
designated root 8000.ecf4bbfc1c69 path cost 100
designated bridge 8000.ecf4bbfc1c69 message age timer 0.00
designated port 8014 forward delay timer 0.00
designated cost 0 hold timer 0.00
flags

Listing 13: SONiC switch detected itself as the only device in the STP domain. Therefore
all its ports are in forwarding state.
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Regarding STG functionality we observed that VLAN 20 configured in the tests was
actually reflected in the STG NPU status (Listing 14).
root@sonic:~# bcmcmd 'stg show'
stg show
STG 0: contains 0 VLANs

Disable: xe
STG 1: contains 4 VLANs (1,20,4093-4094)

Forward: xe

Listing 14: SONiC STG state

LAG

We have successfully created all planned LAG bundles. Below we present the verification
of SONiC-OPX LAG. The LACP protocol status as reported on SONiC indicated the
LAG bundle is functioning (Listing 15). Additionally, atop virtual interfaces we set-up
IP addresses and the communication was verified with the ping command (Listing 16).
root@sonic:~# teamdctl PortChannel01 state
setup:

runner: lacp
ports:

Ethernet0
link watches:
link summary: up
#output omitted for brevity
Ethernet4
link watches:
link summary: up
#output omitted for brevity

Listing 15: LACP bundle status verified on SONiC device

root@OPX -S6000-ON:~# ping 10.0.0.56
PING 10.0.0.56 (10.0.0.56) 56(84) bytes of data.
64 bytes from 10.0.0.56: icmp_seq=1 ttl=64 time=2001 ms
#(output omitted for brevity)
--- 10.0.0.56 ping statistics ---
10 packets transmitted , 10 received , 0% packet loss, time 9004ms
rtt min/avg/max/mdev = 0.502/300.147/2001.968/640.093 ms, pipe 2

Listing 16: Verification of LAG bundle operations by pinging the IP address configured
on the other side of the link

6.3 Layer 3 (L3) : OSPF

Feature name OPX+BIRD OPX+Quagga SONiC+Quagga
OSPF pass pass pass

Table 6: L3 tests summary

As shown in Table 6 we successfully established an OSPF domain consisting of three
distinct platforms. First, there were a couple of problems related to OSPF specifics.
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Namely we discovered that hence SONiC uses a fixed MTU size of 9100 bytes, we had
to adjust this parameter on the neighbour OPX switch.

SONiC+Quagga switch (attached to 192.168.1.0/24 network) received a route update
about 192.168.0.0/24 and installed it in his routing table (Listing 17).
root@sonic:/home/admin# vtysh -c 'show ip ospf rout'
============ OSPF network routing table ============
N 192.168.0.0/24 [20] area: 0.0.0.0

via 192.168.1.11, PortChannel02
N 192.168.1.0/24 [10] area: 0.0.0.0

directly attached to PortChannel02

Listing 17: The route to 192.168.0.0/24 remote network is received to SONIC+Quagga
switch

Additionally, it can be seen that OPX+Quagga switch detected both its neighbours
(Listing 18).
root@OPX -4048-ON:/etc/network/interfaces.d# vtysh -c 'show ip ospf nei'
Neighbor ID Pri State Dead Time Address Interface RXmtL RqstL DBsmL
0.0.0.10 1 Full/DROther 39.206s 192.168.0.10 bond0:192.168.0.11 0 0 0
10.1.0.32 1 Full/DROther 39.633s 192.168.1.12 bond1:192.168.1.11 0 0 0

Listing 18: OSPF neighbours reported by OPX+Quagga. It shows the visibility of
SONiC+Quagga and OPX+BIRD devices.

In Listing 19 we present NPU FIB entries on all devices used in the test. As can be
observed the routing table entries from the NOS were offloaded to the hardware.
root@sonic:/home/admin# bcmcmd 'l3 defip show'
Unit 0, Total Number of DEFIP entries: 393216
# VRF Net addr Next Hop Mac INTF MODID PORT PRIO CLASS HIT VLAN
#output omitted for brevity
262152 0 192.168.1.0/24 00:00:00:00:00:00 100003 0 0 0 1 n
262153 0 192.168.0.0/24 00:00:00:00:00:00 100004 0 0 0 0 n

root@OPX -4048-ON:/etc/network/interfaces.d# opx-switch-shell 'l3 defip show'
Unit 0, Total Number of DEFIP entries: 16384
# VRF Net addr Next Hop Mac INTF MODID PORT PRIO CLASS HIT VLAN
2048 0 192.168.0.0/24 00:00:00:00:00:00 100002 0 0 0 0 n
2048 0 192.168.1.0/24 00:00:00:00:00:00 100002 0 0 0 0 n

root@OPX -S6000-ON:~# opx-switch-shell 'l3 defip show'
Unit 0, Total Number of DEFIP entries: 16384
# VRF Net addr Next Hop Mac INTF MODID PORT PRIO CLASS HIT VLAN
2816 0 192.168.0.0/24 00:00:00:00:00:00 100002 0 0 0 0 n
2816 0 192.168.1.0/24 00:00:00:00:00:00 100004 0 0 0 0 n

Listing 19: NPU level verification of FIB entries. The required routes corresponding to
our test were installed in particular switch FIB.

Lastly, we show the verification of the connectivity issued from the SONiC device (List-
ing 20).
root@sonic:/home/admin# traceroute 192.168.0.10 -n -q 1
traceroute to 192.168.0.10 (192.168.0.10), 30 hops max, 60 byte packets

1 192.168.1.11 0.494 ms
2 192.168.0.10 1.468 ms

Listing 20: Traceroute from SONiC+Quagga, traversed OPX+BIRD device
(192.168.1.11) and reached OPX+Quagga (192.168.0.10)
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7 Results: FIB installation latency

Figure 12: OPX and SONiC route installation latency comparison

Figure 12 illustrates the route installation latency for two different configurations we
created. According to our measurements, it appears that SONiC had noticeably lower
FIB installation latency than corresponding OPX configuration.
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8 Discussion

8.1 Preliminary phase

The ecosystem of white-label NOSes and hardware is in constant development and there-
fore it undergoes dynamic changes. During our project, we were blocked a couple of times
due to deletion or move of documentation (FlexSwitch) or simply the lack of supported
hardware. Whereas, in the span of a few weeks the situation was suddenly changing
i.e. HW support added, new features included in the project.

Flexswitch

We initially aimed to include FlexSwitch in the tested control-plane stacks. First, we
attempted to test FlexSwitch’s container-based test setup1. With that, we managed to
perform basic Ansible configuration including IP addressing and OSPF. Secondly, we
have built FlexSwitch from the source code committed to OPX project. However, we
were unable to reproduce OSPF configuration which has worked in a container-based
setup. This was mostly due to the fact that that FlexSwitch’s version and setup method
we used in the container setup differed from the one we have compiled. Due to time
constraints, therefore, we considered FlexSwitch to be unfeasible to be used.

8.2 Feature test

CLI usability

Generally, the CLI of SONiC was more consistent and appeared well-thought. It def-
initely was resembling the functionality known from commercial NOSes. OPX on the
other hand offered rather cumbersome CLI experience. We believe that considering us-
ability, CPS API should be the only way of configuring OPX device. However, that

1https://github.com/SnapRoute/dockerLab
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would require a layer of extra code interacting with CPS and translating the configu-
ration to CPS calls. Yet, additional configurations e.g. IP address of a management
interface or Quagga configuration, would require separate means to configure.

SONiC development focus

In the future release SONiC.201712 there are some important features to be supported
such as VLAN trunking, MAC aging or port breakout. As the project itself focuses on
creating NOS for a cloud datacenter fabric, it does not emphasize on a feature set one
would expect from a general purpose network device. Therefore, it seems to be no active
development in regard to features such as OSPF or Spanning-Tree Protocol support.

8.3 FIB installation latency accuracy

There were couple of weak points in the approach we took to measure the route instal-
lation latency. First, to explain the result we reviewed the configuration once more and
noticed that a stock Quagga installation in SONiC is configured with Forwarding Plane
Manager (FPM). This is an optional component designed specifically for the cases of
forwarding plane being distinct than Linux kernel. This effectively provides a shortpath
to NPU communication (Figure 13).
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Figure 13: FPM component enables bypassing the kernel FIB and direct communication
with NPU interface component

Secondly, both of the timestamps we recorded were gathered by parsing relevant log
files and extracting the required information. We have not estimated what could be
the accuracy of those timestamps and whether it is reliable to use them. Lastly, the t2
timestamp was obtained from two different sources: (1) OPX’s CPS and (2) SONiC’s
SwSS logs. Although functionally similar, it is possible that those two components
report successful route installation at different execution stages effectively falsifying the
results.
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9 Conclusions

First, we find it feasible to create an open-source white-label switching stack with both
OPX and SONiC. When a NOS is combined with an open routing protocol software
(e.g. Quagga, BIRD) it is possible to provide a basic set of L2 and L3 functionalities
one would require from a data-center switch. Nonetheless, neither of evaluated NOS
projects should be considered perfect. Looking at the CLI usability, we find SONiC
to have a more unified approach to the NOS configuration than OPX. We believe that
having a single configuration file, which in addition has automation-friendly structure
is a more robust solution than OPX’s approach. However, considering following feature
tests, OPX covered the wider scope of functionalities (i.e. VLAN, STP) than SONiC.

Secondly, in the performed evaluation we encountered noticeable differences in regard to
the FIB route installation latency between OPX+Quagga and SONiC+Quagga setups.
The results suggest that message passing in SONiC operates significantly faster than
in OPX. However, we find it crucial to adjust Quagga’s configuration with FPM (and
redoing the tests) before aiming to draw any further conclusions.
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10 Future work

As both NOS projects are in ongoing development we believe it will be beneficial to
reassess their new versions. Moreover, the test scenarios could be extended and comple-
mented with new approaches (i.e. testing API, BGP protocol, commercial NOS interop-
erability). Lastly, it is interesting to evaluate non-Broadcom based devices e.g. Mellanox
switches.
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