
Research on Networks 2017

Final report – University of Twente

Overview

This document describes the findings done within Research on Networks in 2017, where we focused on
two topics: we investigated more detailed flow export of IPv6-specific network features, along with
ways to visualize these measurements, and, we continued work on and using the Anycast testbed. The
latter resulted in a scientific publication and a M.Sc. thesis, which are provided in separate documents;
the remainder of this document describes the finding of the IPv6-specific measurements.

Code produced is available on https://github.com/ut-dacs/ipfix-viz

Table of Contents
Overview..2
Enhancing IPFIX-based IPv6 measurements...3

Extension Headers & Flow Measurements...4
Implementation..5

ICMP Type + Code...5
TCP Flags...5

Visualization..7
Iteration #1: RRDtool...8
Shortcomings..10
Iteration #2: OpenTSDB + Grafana..11

Lessons learned & possible improvements...14

Enhancing IPFIX-based IPv6 measurements

Last year in Research on Networks, we started research on IPFIX measurements with an IPv6 focus.
Specifically, we were interested to which extend Extension Headers affected flow measurements.

Results from last year’s efforts resulted in a publication on the TMA Network Traffic Measurement and
Analysis Conference in Dubin/Maynooth, and showed the potential of enhancing flow exporters (in our
case, INVEA-TECH flow probes) using plugins. The measurements showed a significant amount of
legitimate traffic to be ‘hidden’ behind Extension Headers. Analyzing the source/destination port
distribution of this traffic hinted at large shares of DNS and HTTP(S). As these protocols directly affect
end-user quality of experience, simply dropping all traffic containing Extension Headers was
recommended against. Dropping based on Extension Headers is, however, a popular approach for
network operators to secure their networks from these ‘scary’ Extension Headers.

With these insights, we narrowed our focus in an attempt to extract more details from flows containing
Extension Headers. Specifically, we extended the exporter plugin to enable export of ICMP information
when Extension Headers are present, as well as TCP flag information. As both protocols are known to
allow misuse (albeit not for IPv6 per se in the case of TCP, as e.g. a TCP SYN flood is network layer
agnostic), we aimed at enabling operators to do more detailed analysis on their collected flows.

Part of the TMA publication consisted of analysis of a large amount of collected data in the search for
misuse. We learned that retroactive querying on such large amounts of data is cumbersome, and finding
small anomalies is not trivial. Therefore, we expanded our efforts from only collecting detailed flow
data to include visualizations of said data. Combining the newly implemented export features (ICMP
Type and Codes, and TCP flags) with experimental visualization allows operators to better explore
flows and get a better understanding of these ‘strange Extension Headers’.

Extension Headers & Flow Measurements

Described in more detailed in the TMA publication, this section highlights the challenges of flow-based
measurements on traffic containing Extension Headers.

Shown below are two abstract IPv6 packets: the first one without any Extension Header, the second
one. As flow metering (the process in the flow exporter aggregating packets into flow records) uses the
Next Header field in its accounting process, clearly, having an Extension Header affects this: where in
the ‘normal’ packet the Next Header field will contain e.g. 6 or 17 (for respectively TCP or UDP
traffic), it contains the protocol number of the Extension Header when one is present. Even though the
actual upper layer protocol, thus TCP or UDP in this example, is present further down the packet, flow
exporters do not extract and use it in their metering process. This results in a distorted or inaccurate
view on the traffic: as transport ports are also ‘hidden behind the Extension Header’, multiple flows
between a pair of hosts are possibly aggregated into a single flow. Other upper layer features, such as
ICMP Type and Code, and TCP flags, are naturally hidden as well.

Implementation

Leveraging the code from last year’s development, we already have the traversal of one or more
Extension Headers covered in our plugin’s functionality. The plugin framework within the INVEA-
TECH Flowmon exporters enables adapting the flow cache key, which is a necessity in case of the
ICMP Type and Code: in many flow exporter implementations, the ICMP Type and Code carry the
function of the transport protocol ports, in the sense that they distinguish multiple ICMP flows. Analog
to the port numbers, the Type and Code are included in the flow cache key. This improves the accuracy
of the resulting exported flow records, as multiple smaller ICMP flows are not aggregated in one flow
record incorrectly describing a single flow. Naturally, this also exports in the Type and Code as features
(Information Elements in IPFIX terminology), enabling operators to do detailed analysis for
performance and security ends.

ICMP Type + Code

In terms of security-related issues, one can think of ICMP-based flooding attacks that remain hidden
when naive flow export (i.e., not taking into account Extension Headers and the actual upper layer
features like ICMP Type and Code). Specifically for IPv6, attacks based on false ICMP Packet Too Big
messages might trigger malign MTU reductions on paths, impairing quality of service on the network.
However, a far more common use-case for extraction of ICMP information is basic network
troubleshooting. Especially in the area of IPv6 where some operators tend to treat the network and the
devices on it as if it were IPv4, and e.g. configure firewalls to drop all ICMP traffic, unexpected
scenarios occur. Operators have to deal with subtle observations at best, thus requiring all details
possibly available. For example, a ICMPv6 Type 1 (Destination Unreachable) with any Code (e.g. 3,
Address Unreachable) with a Hop-by-Hop Extension Header will show up as a flow containing the IP
address of the router sending the ICMP message, but with protocol 0 and no ports nor ICMP type/code
information. Without enhanced export as we present and propose, troubleshooting is unnecessarily
hard.

Information Elements

As the ICMP Type and Code behind any possible Extension Header do not differ from those in ICMP
traffic without Extension Headers, we can reuse the normal Information Elements as specified by
IANA. The Code and Type are combined into a single value (the Type is shifted 8 bits to the left, then
the Code is simply added), which is defined as e0id139 named ‘icmpTypeCodeIPv6’.

TCP Flags

In the same vein of troubleshooting subtle problems, TCP flags can be a valuable piece of information
to operators when determining (up to a certain extent) why, when or how connections are lost. Though
in the case of TCP flags hidden behind Extension Headers, certain types of attacks become invisible as

well. Detection of a SYN-flood is trivial, as one simply looks for ‘a large number of flows towards a
single system, containing only the TCP SYN-flag’. When Extension Headers are present in the traffic
though, a naive flow exporter will produce a flow record showing a single TCP flow because the port
information is hidden in the actual upper layer, and moreover, it does not tell us anything about the
flags observed in the packets. The result is ‘a single, large flow’ instead of ‘many small flows’, ergo
completely different from what one would base the detection on.
Other scenarios emphasizing the usefulness of TCP flag information in flow export include
investigating TCP-RST flags, send in either malicious context or caused by end system misbehavior.

Information Elements

Similarly to the ICMP Type and Code, the TCP flags can be exported in the Information Element
defined by IANA. This is the ‘tcpControlBits’ field, e0id6.

Visualization

With the enhanced flow export available, measuring on the University of Twente network (being IPv6-
enabled for years) results in a significant amount of data, both in terms of traffic and in number of
flows. As we focused on subtle aspects, i.e. ICMP Types and Codes and TCP flags, going through all
this data while not always knowing what to look for is cumbersome. Especially when analyzing flow
data spanning a long time window, think multiple weeks or months, any possible occurrences of subtle
anomalies do not pop up from the large collection of flow records.

In an attempt to combat this, we developed a small framework to aid in exploratory visualizations. The
main goal is to visualize specific (small) flow features over time, while being able to easily add new
visualizations based on query syntax operators are used to. Shortly put, the main requirements are:

• Loosely coupled, allowing easily switch to a different output (plotting) format

• Extensible, allowing new graphs ‘on-the-fly’

• Built with/on FOSS in order to prevent any vendor lock-in or other restrictions

The development process resulted in two iterations: firstly, an RRDtool based output was implemented,
but it’s limitations resulted in the second, more flexible setup based on OpenTSDB and Grafana.

Iteration #1: RRDtool

Maybe the most seen graph in anything related to networking, RRDtool is a suite allowing one to
append a Round-Robin Database with values over time. With RRD graphs as our ‘plotting output’, we
created to following set of components to go from IPFIX-based measurements to graphs useful for
exploratory analysis of network data:

Components:

• Existing FlowMon/INVEA-TECH exporter, combined with the open-source IPFIXcol collector.
Analogue to nfdump in the well-known and often used NfSen suite, IPFIXcol comes with
fbitdump, providing equivalent ways to query collected flow data. Note that both the exporter
and collector feature our enhancements to export and handle our newly implemented
Information Elements.

• Configuration file describing the desired graphs in terms of fbitdump queries.

• Python-based providing the functionality to create the RRD database files based on the
configuration file, as well as update existing databases with newly collected flow-data.

• Crontab to trigger both the updates and creation of new databases in case of alterations of the
configuration file, thus automating everything.

Screenshots

Illustration 1: Overview of all plots, showing flows/packets/bytes per network feature

Illustration 2: ICMPv6 behind Extension Headers: though only a handful of flows, we can still see
something happened on the network

Take aways

We quickly learned that a brute-force approach to plotting, i.e. plotting the number of packets, bytes
and flows for many queries, reveals patterns and outliers quickly. Having many plots on a single page,
though structured in a certain order, we can leverage the human eye to spot any peaks, anomalies or
differences over time. This, without pro-actively configuring the setup to plot specifically for these
patterns. When we found anything interesting but needed a more fine-grained plot, simply adding an
extra query to the configuration file proved to work. An example for this was plotting ‘everything that
contains one or more extension headers’. As appeared to be the case on the network of the University
of Twente, IPSEC is used in sizable numbers. In IPv6, IPSEC is specified as an Extension Header. We
quickly learned that we were interested in ‘one or more extension headers but not IPSEC’, for which
we had graphs directly after altering the configuration file. In other words, having the opportunity to
quickly add in new graphs based on query-syntax is valuable.

Shortcomings

While pleasing some people with their old-school aesthetics, the looks of RRD graphs can be
considered outdated. But more importantly, functionally speaking, RRD databases and graphs have
certain shortcomings: one can only add datapoints with timestamps later than the last datapoint, i.e.
backfilling a database is not possible without complete destroying and re-creating the database.
Combining multiple databases into one graph is possible, though requires significant efforts. Other
features like zooming in graphs or manipulating the plotting time frame are not trivial as well.

Because we observed the value of having multiple graphs close together, showing different network
traffic features thus allowing to spot relations between different features, the next iteration focuses on
increasing the flexibility of the plots, to further enhance the opportunity for exploratory analysis.

Iteration #2: OpenTSDB + Grafana

In addition to the attempt to introduce more graphing flexibility as aforementioned, a second iteration
also tests how flexible the framework itself is: we replace the output (RRDtool) with more modern
approaches to time-series databases and pair it with a separate graphing engine. With a strong
preference towards FOSS solutions, we chose OpenTSDB for storing the time-series datapoints, and
coupled it with Grafana, a popular, modern graphing engine.

With OpenTSDB, many of the shortcomings in RRD are resolved: the back-filling problem, and adding
in data points (possibly from multiple sources) in general is more flexible process , and together with
Grafana the combining of multiple data sources into a single graph is simple. This allows for more in-
depth analysis based on our plots, as now we can:

• easily compare network traffic features from multiple sources, e.g. different IPFIX exporters on
different networks

• combine multiple network traffic features within a single graph, enabling for a more aimed way
to find patterns or relations between those features.

Alterations

Input-wise, instead of writing the datapoints to RRD database files, all datapoints (describing multiple
network data features) go into one OpenTSDB instance. OpenTSDB requires Hbase to store its values,
which is a great future outlook when scaling up to storing many datapoints from many networks, as
Hbase will allow for a Hadoop-based clustered approach.

Output wise, instead of using RRDgraph with the simple HTML wrapper, Grafana allows for direct
coupling with an OpenTSDB instance and provides customizable dashboards out of the box.

Screenshots

Illustration 3: Overview of a Grafana-based dashboard, showing plots related to ICMPv6 and
Fragmentation

Illustration 4: Detailed view of fragmented traffic on a different
network (AS1101), showing vastly different characteristics from
the UT network.

Take aways:

Where RRD database files were just that, simply files on the filesystem, introducing OpenTSDB and
thus Hbase certainly adds complexity to the system. Deploying the system on a system limited in
resources requires detailed fine-tuning, because failure of one component (say, Hbase running out of
disk space) will cause the entire system to enter a failed state. Troubleshooting the issue is now a matter
of going through log files of multiple applications/services and possibly restarting multiple services as
well, in order to get back to a working graphing setup.

The additional flexibility in plotting we were after, does however justify these additional efforts. This
iteration brought us dynamic dashboards and combined plots, which can be customized by the operator
for troubleshooting ends, or a security officer for spotting anomalies or threats, in any way they see fit
for their job at hand.

Lessons learned & possible improvements

Concluding, we find that visualization works. Especially, when we do not know where to look for
exactly, which can be the case with new IPv6 concepts, plotting for exploratory analysis quickly yields
insight in what is going on on the network.

When working in such a way, the ability of creating new plots or combining multiple graphs in a single
plot is key, as the analysis of the network data is often an iterative process as well: one pattern or
relation leads to a more fine-grained query highlighting more specific network traffic, whether it’s
security related or functional troubleshooting.

While IPFIX itself is flexible enough to allow fine-grained measurements (and thus visualization), we
notice a certain degree of vendor-lockin because of extensions being vendor-specific. With the uprise of
P4, we hope to be able to perform measurements in a more generically applicable way. With the created
visualization setup, switching from IPFIX to P4 for input should be easy.

	Overview
	Enhancing IPFIX-based IPv6 measurements
	Extension Headers & Flow Measurements
	Implementation
	ICMP Type + Code
	TCP Flags

	Visualization
	Iteration #1: RRDtool
	Shortcomings
	Iteration #2: OpenTSDB + Grafana

	Lessons learned & possible improvements

