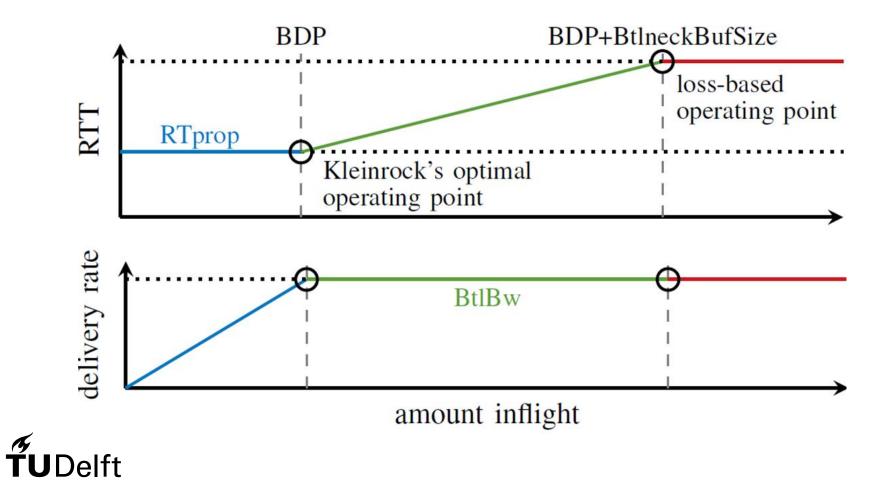
Congestion Control and Avoidance

Belma Turković, Jorik Oostenbrink and Fernando Kuipers

Problem statement


- Send as many packets as possible without overloading the network
- Adjust sending rate after detecting congestion
- Reduce reaction and detection time

Current approaches

- Implemented in the endhosts
 - Neither sender nor receiver relay on any notification from the network when adjusting the rate
- Classification:
 - Loss-based
 - Delay-based
 - Combination

Loss-based algorithms

- congestion is only detected when the bottleneck is already overloaded
- Consequences:
 - Larger delays
 - Bufferbloat
 - Packets need to be dropped

Delay-based algorithms

- delay as indicator of congestion
- based on precise RTT measurement
 - Estimating base RTT value is difficult
 - Not able to get a fair share when competing with loss based flows

Measuring in the Dataplane

- More accurate measurements
 - More optimal delay-based congestion control
 - Measurements should be performed periodically
- More measurements (e.g. queue size)
- Faster reaction times
- Improved algorithms

Plan

- Literature Survey of current approaches
- Testbed experiments
 - Determine effect of dataplane measurements on quality of congestion control
 - Find points of improvements
- Create own approach
 - Test different metrics

Questions/Comments/Suggestions?

- Contact Info:
 - Belma Turković (B.Turkovic-2@tudelft.nl)
 - Jorik Oostenbrink (J.Oostenbrink@tudelft.nl)
 - Fernando Kuipers (F.A.Kuipers@tudelft.nl)

