When the Dike Breaks: Dissecting DNS Defenses During DDoS

Giovane C. M. Moura^{1,2}, John Heidemann³, Moritz Müller^{1,4}, Ricardo de O. Schmidt⁵, Marco Davids¹

ACM IMC 2018, Boston, Massachusetts 2018-10-30

¹SIDN Labs, ²TU Delft, ³USC/ISI, ⁴University of Twente, ⁵University of Passo Fundo

- DDoS attacks are on the rise [2, 1, 5]
- Getting bigger, more frequent, cheaper, and easier

DDoS against DNS services

Root DNS DDoS Nov 2015

- red shows some sites were out, but no know errors
- users: no known reports of errors [3]

Dyn Oct 2016

Hackers Used New Weapons to Disrupt Major Websites Across U.S.

- users: some users could not reach popular sites [5]: Twitter, Netflix, Paypal...
- even though Web servers were fine

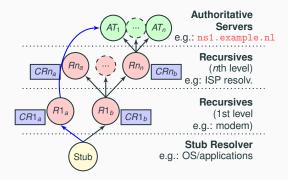
Two large DDoSes, very different outcomes. Why?

DDoS against DNS services

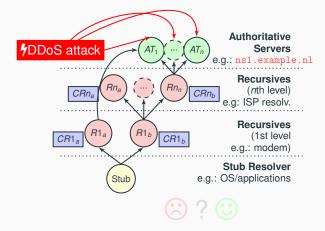
Root DNS DDoS Nov 2015

- red shows some sites were out, but no know errors
- users: no known reports of errors [3]

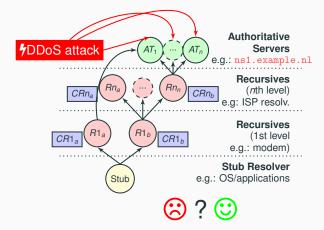
Dyn Oct 2016


Hackers Used New Weapons to Disrupt Major Websites Across U.S.

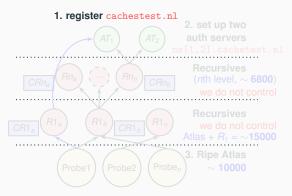
- users: some users could not reach popular sites [5]: Twitter, Netflix, Paypal...
- even though Web servers were fine


Two large DDoSes, very different outcomes. Why?

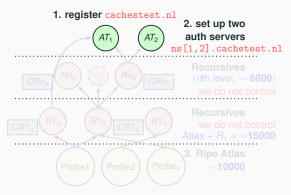
Background: the many parts of DNS


- · Clients (stub) use recursives to resolve domains
- Recursives vary in complexity and architecture
- Authoritative servers answer with a **TTL value**: max limit to cache (CRn)

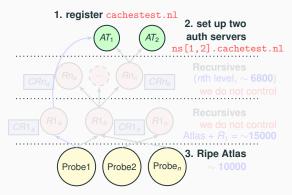
How are users affected by DDoS?

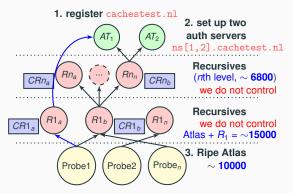

• How much recursives's built-in defenses help user's experience?

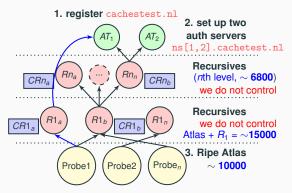
How are users affected by DDoS?

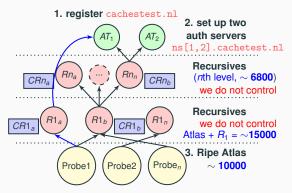


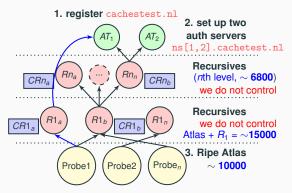
 How much recursives's built-in defenses help user's experience?


- Part 1: (a) define user experience and (b) evaluate caching
- Part 2: verify results of Part 1 in production zones (.nl)
- Part 3: emulate DDoSes in the wild to to observe user experience

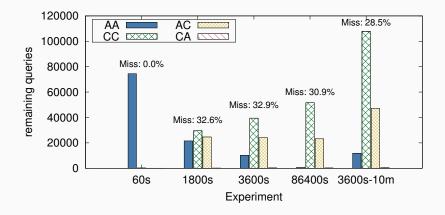

- Probes send unique queries to avoid cache interference
- Custom answers to tell if from cache or not (see Sec. 3.2)
- Probe every 20min, for 2 to 3 hours
- Various TTLs: 60, 1800, 3600, and 86400s
- 15000 Vantage Points, 6800 R_n (no DDos)


- Probes send unique queries to avoid cache interference
- Custom answers to tell if from cache or not (see Sec. 3.2)
- Probe every 20min, for 2 to 3 hours
- Various TTLs: 60, 1800, 3600, and 86400s
- 15000 Vantage Points, 6800 R_n (no DDos)


- Probes send unique queries to avoid cache interference
- Custom answers to tell if from cache or not (see Sec. 3.2)
- Probe every 20min, for 2 to 3 hours
- Various TTLs: 60, 1800, 3600, and 86400s
- 15000 Vantage Points, 6800 R_n (no DDos)


- Probes send unique queries to avoid cache interference
- Custom answers to tell if from cache or not (see Sec. 3.2)
- Probe every 20min, for 2 to 3 hours
- Various TTLs: 60, 1800, 3600, and 86400s
- 15000 Vantage Points, 6800 R_n (no DDos)

- Probes send unique queries to avoid cache interference
- Custom answers to tell if from cache or not (see Sec. 3.2)
- Probe every 20min, for 2 to 3 hours
- Various TTLs: 60, 1800, 3600, and 86400s
- 15000 Vantage Points, 6800 R_n (no DDos)


- Probes send unique queries to avoid cache interference
- Custom answers to tell if from cache or not (see Sec. 3.2)
- Probe every 20min, for 2 to 3 hours
- Various TTLs: 60, 1800, 3600, and 86400s
- 15000 Vantage Points, 6800 R_n (no DDos)

- Probes send unique queries to avoid cache interference
- Custom answers to tell if from cache or not (see Sec. 3.2)
- Probe every 20min, for 2 to 3 hours
- Various TTLs: 60, 1800, 3600, and 86400s
- 15000 Vantage Points, 6800 R_n (no DDos)

• How efficient is caching in the wild?

Results: how good caching is in the wild?

- Yellow color is cache misses (AC)
- Good news: caching works fine for 70% of all 15,000 VPs
 - With our not popular domain
- but \sim 30% of cache misses

Half of cache misses are from from complex caches like at Google

- cache fragmentation with multiple servers
- (previous work on Google DNS [6])

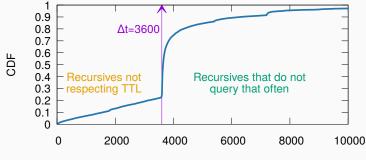

TTL	60	1800	3600	86400	3600-10m
AC Answers	37	24645	24091	23202	47,262
Public R ₁	0	12000	11359	10869	21955
Google Public R ₁	0	9693	9026	8585	17325
other Public R ₁	0	2307	2333	2284	4630
Non-Public R ₁	37	12645	12732	12333	25307
Google Public R _n	0	1196	1091	248	1708
other R _n	37	11449	11641	12085	23599

Table 1: AC answers (cache miss) public resolver classification

- Caching works 70% as expected
- Are these experiments representative?
- We look at .nl production data
 - we compute Δt (time since last query)
 - Compare to TTL of 3600s
 - 485k queries from 7,779 recursives

Part 2: caching in production zones

- Most resolvers send queries usually ~3600s (.nl TTL)
- 28% do not respect the 1h TTL
- Yes, experiments are like real zone
- (we also look into the Roots , see paper [4])

- We know how caching works in the wild (both Ripe and .nl)
- Time to move Part 3: What happens under DDoS attacks?
- Goal: understand client experience under DDoS

Part 3: Emulating DDoS

Root DNS DDoS Nov 2015

RIPE NCC	Unanswered queries •	≤ 10% ≥ 30%	Data resolution: 10 minutes	1 7 C +	₿ ◀ 0	Q Q . N
	mme. (met)		From: 20	15-11-30 00.00	Te: 20	15-11-30 12.00 UT
Aroot-L.mt. Pvi						
Aroot-s., net, IPvi						
brooksnet, tPvi						
breeks.net IN						
crooks.net. IPvi						
C/DOFE.INT. IPV						
dates and Pv						
dates and the						
Londo, net IN						
Looks, net IN						
Grant Pvi						
A TRUE S. MILLING. IPVI						
hands, ret 15d						
Linda, net Evi						
					_	
Lans, et the						
kratis, ret IN						
kinds of Dd						
Looks out the						
Lagers, net, the						
mants on the						
manufactured, IPv4						
1	2 2 2 2 2 2		1111		8 8 8	1.1
8						100 C

Dyn Oct 2016

Hackers Used New Weapons to Disrupt Major Websites Across U.S.

- Remember: clients experience varied significantly for these
- Our goal is to explain their experience

- Similar setup as other experiments:
- Emulate DDoS: drop incoming queries at certain rates at Authoritative servers, with iptables

- 100% packet loss via iptables
- TTL=3600s (1 hour)
- We probe every 10 minutes
- At t = 10 min, we drop all packets

Complete DDoS: TTL: 60min, 100% failure

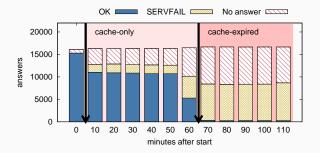
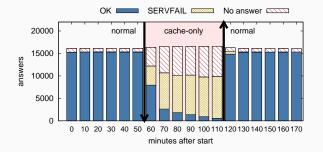



Figure 1: Experiment A: 100% failure after 10min, TTL: 60min

- DDoS starts after 1st query (fresh cache)
- During DDoS: 70% of clients are served ^(C) (cache)
 - except right at 60min (expire)
- After cache expires: only 0.2% clients (serve state)
 - draft-ietf-dnsop-serve-stale-02

- Prior experiment had OPTIMAL cache, loaded just before attack
- Now we load the cache much earlier

Complete DDoS: changing cache freshness

Figure 2: Experiment B: 100% failure after 60min, TTL: 60min

- Cache much less effective (most users 🙁)
- Why? TTL is decremented over time in caches

Complete DDoS: changing cache freshness

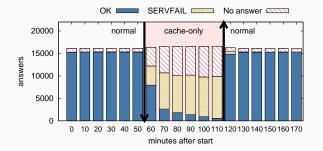


Figure 2: Experiment B: 100% failure after 60min, TTL: 60min

- Cache much less effective (most users 🙁)
- Why? TTL is decremented over time in caches

- Caching freshness impacts user experience
- How TTL impacts clients' experience?

Complete DDoS: TTL influence

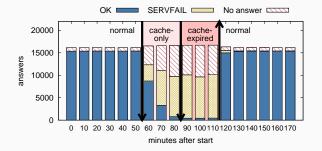


Figure 3: Experiment C: 100% failure after 60min, TTL: 30min

- Users experience worsens with shorter TTL
- Most users (3)

- caching helps 70% of cases
- · caches don't work after they time out
 - except for serve slate
- · caches will time-out at different times
- conclusion:
 - operators with modest TTLs get quite a bit of protection
 - serve-stale would help

- Not all DDoS are strong enough to bring all servers down
- Some lead to partial failure (Root DNS Nov 2015 [3])
- In this case, how would users experience the attack?

Partial Failure DDoS: 50% success

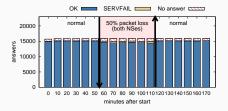
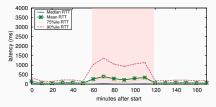



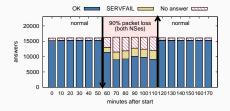
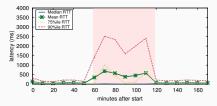
Figure 4: Experiment E: 50% failure after 60min, TTL: 60min

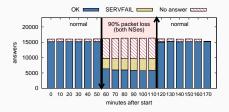
Good: most clients get answer ☺, even at 50% loss

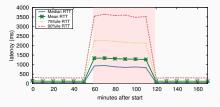
• but more latency

- · Let's emulate an attack that leads to 90% packet loss
- How will that impact clients experience?

Partial Failure DDoS: changing intensity to 90%


Figure 5: Experiment H: 90% success DDoS, TTL: 30min


Good: most clients STILL get answer ⁽¹⁾, even at **90%** loss (but more latency)

- TTL = 1 minute
- Probing Interval = 10minutes
 - · Cache expires before new round of measurements
- Emulates CDNs setup
- We drop 90% of packets

Partial Failure DDoS: disabling caching

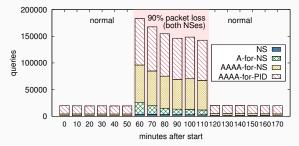


Figure 6: Experiment I: 90% success DDoS, TTL: 1min

- Even with no caching (TTL 1min), 27% get an answer 3
- Most users 🙁

Partial Failure DDoS: recursives retrying

Figure 7: Queries received at Auth Servers for Experiment I: 90% success DDoS, TTL: 1min

- Part of DNS resilience is that recursives keep on retrying
- Recursives will "hammer" authoritatitve servers
- Friendly fire 8.1x in case of no caching

Partial Failure DDoS: more recursives in use

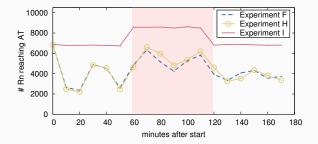


Figure 8: Unique Rn recursives addresses observed at authoritatives

- We have \sim 15k vantage points and \sim 6.8k R_n recursives
- Partial DDoS: Rn increases to 8.5k (24%) on Exp. I
- Shows complex recursives infrastructure; more are used in case of failure

- Recursive infrastructure will "expand" and retry
 - · More recursives in use seen at authoritatives
 - Same recursives will retry multiple times
- Users may experience longer latency
 - As recursives will retry to resolve the domain
- Caching reduces latency during DDoS
- The longer the TTL, the better the user experience
 - · provided caches are filled and not about to expire

Implications

Our experiments explain user's experiences in previous DDoS

Root DNS DDoS Nov 2015

RIPE NCC	Unaccovered queries •	s 10% > 30% D	uto resolution: 10 minutes	# 7 C ->	(a) < < < < < < < < < < < < < < < < < < <	F
	zone (reet)		From 2	015-11-30 00.00	Tex 2015-11-3	0 12.00 UT
aroot-a. ret. IPvi						
Arbot-s., net, IPvi						
brooksnet, IPvi						
bracks.net IN						
crool-snet, IPvi						
C/DOFE.INT. IPV						
dataset survey. PV						
dates and the						
eroolis.net IN						
Looks, net IDd						
groots.net. Pvi hradis.net. Pvi						
hands, ret IN						_
Linda, net Evi						_
Uppersumer PV						
Laboration Pro						_
Lans, et the						_
kratis, ret IN						_
kinds of Dd						
Lipping, net, IPvi						_
Lagers, net, the						_
mants on the						_
manufactured, IPv4						
,	11111		1111			8
8						

- Users: no known reports of errors
- Why? Longer TTLs and some servers remained up

Dyn Oct 2016

Hackers Used New Weapons to Disrupt Major Websites Across U.S.

- Users: many could not resolve
- Why? Shorter TTLs and others

Conclusions

- Caching and retries: important part of DNS resilience
 - 50-60% clients served with 90% packet loss (TTL 30min)
 - 27% clients served with 90% packet loss (TTL 1min)
- Explain recent DDoS outcomes
- What's the "best TTL" ?
 - There's a clear trade-off between TTL and DDoS robustness, choose longer if you can
 - There's no "one size fits all" solution

• IETF draft (hopefully to be adopted by DNSOP)

draft-moura-dnsop-authoritative-recommendations-00

contact: giovane.moura@sidn.nl

DNSOP Working Group Internet-Draft Intended status: Informational Expires: June 1, 2019 G. Moura SIDN Labs/TU Delft W. Hardaker J. Heidemann USC/Information Sciences Institute M. Davids SIDN Labs November 28, 2018

Recommendations for Authoritative Servers Operators draft-moura-dnsop-authoritative-recommendations-00

Abstract

This document summarizes recent research work exploring DNS configurations and offers specific, tangible recommendations to operators for configuring authoritative servers.

This document is not an Internet Standards Track specification; it is published for informational purposes.

[1] Sam Kottler.

February 28th DDoS Incident Report | Github Engineering, March 2018.

.https:

//githubengineering.com/ddos-incident-report/.

[2] Carlos Morales.

February 28th DDoS Incident Report | Github EngineeringNETSCOUT Arbor Confirms 1.7 Tbps DDoS Attack; The Terabit Attack Era Is Upon Us, March 2018. https://www.arbornetworks.com/blog/asert/ netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-att [3] Giovane C. M. Moura, Ricardo de O. Schmidt, John Heidemann, Wouter B. de Vries, Moritz Müller, Lan Wei, and Christian Hesselman.

Anycast vs. DDoS: Evaluating the November 2015 root DNS event.

In *Proceedings of the ACM Internet Measurement Conference*, November 2016.

References III

[4] Giovane C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O. Schmidt, and Marco Davids.

When the dike breaks: Dissecting DNS defenses during DDoS (extended).

In *Proceedings of the ACM Internet Measurement Conference*, October 2018.

[5] Nicole Perlroth.

Hackers used new weapons to disrupt major websites across U.S.

New York Times, page A1, Oct. 22 2016.

[6] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman.

On measuring the client-side DNS infrastructure.

In Proceedings of the 2015 ACM Conference on Internet Measurement Conference, pages 77–90. ACM, October 2013.