
PROGRAMMABLE NETWORK SERVICES
Hardware accelerated lightweight authentication

Jeffrey Panneman, Floris Drijver, Piotr Zuraniewski, Niels van Adrichem, Bart Gijsen

RON++, 03-12-2018

CONTENTS

Introduction + Motivation

Cryptographic considerations

Design + Implementation

Analysis & Results

Future Work + Conclusions

2 | Programmable Network Services

INTRODUCTION + MOTIVATION

Other Autonomous Systems on the Internet cannot be trusted
They allow subscribers to forward packets from unauthentic IP addresses
Per-AS Reverse Path Filtering can solve this,
unfortunately few ISPs implement it

Main cause why UDP Reflection Attacks and
TCP SYN-flood attacks are so successful

3 | Programmable Network Services

OVERALL IDEA

Cust1

ISP1

Cust3

Cust2

ISP2
(transit) ISP3

Signature injected at PE to
prove that IP packet was
sent from originating AS

Optional
verification in

transit

Signature checked at
far end PE

(compulsory)

4 | Programmable Network Services

REQUIREMENTS AND CONSIDERED SOLUTIONS

Flexibility and speed

Netronome Agilio LX 2x40GbE SmartNIC (P4/C with hardware accelerated crypto functionality!)

Any (transit) peer should be able to verify the authenticity of the source of a packet

Ideally use asymmetric crypto function – just 1 signature needed – but not supported by LX card

Symmetric crypto function also possible (shared secret per AS pair)

Backward compatibility – non-participating/non-compliant systems should just forward

Use IPv6 Authentication header (AH, one of extension headers)

Don’t reinvent the wheel, piggyback on earlier IPsec RFC and IP pseudo-header

Limit to authentication / (part of) packet integrity, not full encryption – programmability allows it

Minimal 128-bit security level

5 | Programmable Network Services

Payload

UDP

IPv6

Ethernet II

MULTI-AS SETUP – TRANSPARENT TRANSIT

6 | Programmable Network Services

Payload

UDP

IPv6

Ethernet II

Payload

UDP

AH

IPv6
Ethernet II

Add AH and
generate ICV

Verify and pop

Payload

UDP

IPv6

Ethernet II

Cust1

ISP1
ISP2

(transit) ISP3

Cust2

Payload

UDP

IPv6

Ethernet II

MULTI-AS SETUP – VERIFICATION IN TRANSIT

7 | Programmable Network Services

Payload

UDP

IPv6

Ethernet II

Payload

UDP

AH(1,3)

AH(1,2)

IPv6

Ethernet II

Pop AHs and
generate ICVs

Verify and
pop AH(1,2)

Cust1

ISP1
ISP2

(transit) ISP3

Cust2

MULTI-AS SETUP – VERIFICATION IN TRANSIT

8 | Programmable Network Services

Payload

UDP

AH(1,3)

IPv6
Ethernet II

Verify and
pop AH(1,3)

Payload

UDP

IPv6

Ethernet II

Cust1

ISP1
ISP2

(transit) ISP3

Cust2

IMPLEMENTATION
Combination of P4 and Micro-C

Micro-C exclusively for crypto library interaction
HMAC calculated over IPv6 pseudoheader

Usage of registers for sequence counters
Use of recirculation to limit use of Micro-C

Internally resend the packet to ingress pipeline

Header stack needs to have a maximum configured
P4 Design limit

Instruction limit hit easily
Compiled P4 produces quite a lot of instructions
(very) Limited available space

Forces us to run with only half of the available
threads

9 | Programmable Network Services

TEST METHODOLOGY(1/2) – TESTBED

10 | Programmable Network Services

Spirent – hardware traffic generator, can pump IPv6 traffic @10Gbps (x12)
NoviFlow – hardware accelerated OF1.5+ SDN switch (16x10Gbps)
Pica8 – partially hardware accelerated OF1.3 SDN switch
AgilioLX – gets traffic, runs our code and sends output via its other interface

Card is in 40G mode

TEST METHODOLOGY(2/2) – METHOD

RFC 2544 Frame Loss Test
Varying frame sizes: 86, 128, 256, 512, 1024, 1280, 1474 (including CRC, IPv6 AH will add 44B)

Base input packet is 66 bytes (Eth+IPv6+UDP)
Spirent adds 20 byte signature per packet

Fill the link with varying percentages load
Ranges from 5% to 100%

10 trials with varying test duration (30 & 60 seconds)
Different test cases

Plain forwarding (forward from one port of LX card to another)
Pre-hashing (add AH, don’t call crypto yet)
Post-hashing (add AH, call crypto)

11 | Programmable Network Services

ANALYSIS & RESULTS (GIGABITS PER SECOND)

Select the highest offered load where there were 0

lost frames

No error bars (variability) because of this

Can easily handle 10G with plain forwarding

Test of 30 seconds showed unexpected results for

pre-hashing test case

Drop in performance as frame size increased

Many cases with just a few lost frames(<0.01%)

Test of 30 seconds showed expected results for

post-hashing test case

Crypto island interaction is very expensive

12 | Programmable Network Services

ANALYSIS & RESULTS (FRAMES PER SECOND)

Select the highest offered load where there were 0

lost frames

No error bars (variability) because of this

Can easily handle 10G with plain forwarding

Test of 30 seconds showed unexpected results for

pre-hashing test case

Drop in performance as frame size increased

Many cases with just a few lost frames(<0.01%)

Test of 30 seconds showed expected results for

post-hashing test case

Crypto island interaction is very expensive

13 | Programmable Network Services

ANALYSIS & RESULTS (FRAME LOSS
DISTRIBUTION)

Bulk of losses are significant(>50k frames)
However, large amount of frame loss is
under 10k frames

e.g 100 frames lost with 100mil sent

14 | Programmable Network Services

FUTURE WORK

Key distribution – public keys
Key exchange – negotiate symmetric keys per AS pair
Use of asymmetric signatures

Not yet available in Netronome hardware
Dynamic security associations – cipher suite selection
Optimize performance

Usage of other half of threads (currently not used to increase instruction limits)
Remove recirculation step
Forced to disable FlowCache due to massive frame loss when enabled, needs investigation

Implement crypto as part of service function chain using e.g., segment routing

15 | Programmable Network Services

CONCLUSIONS

Proved that customized crypto operations at multigigabit speed are possible
Found the limits of operations w.r.t.

Crypto island interaction
Headers manipulations

Pushing extension headers and deparsing header stack
SDK cannot parse more than 16 headers
16/Large stack takes up a lot of memory and leads to exhaustion

Instruction count limit
Lightweight authentication is feasible using (current) programmable hardware

More performance can be squeezed out of the hardware with optimization

16 | Programmable Network Services

RON2017 REVISIT

Last year we dove into complex, nested TLV packet (NDN) processing
Used the same hardware
Crypto library was not available
Barely any P4 code, mostly Micro-C

Update last years project, goal is to integrate crypto library and grow familiarity for this years project
Optimized Micro-C code with assistance from Netronome engineers
Card becomes unresponsive and in bad state with (too) high packet influx

Only fix is re-flashing firmware
Debugged with Netronome, solution not yet found

(stable) Performance went from ~10 Mbps to ~60 Mbps
Needs further investigation and support from Netronome

17 | Programmable Network Services

THANK YOU FOR YOUR
ATTENTION

Take a look:
TIME.TNO.NL

