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Heavy Hitter Detection...

* Detect flows with large traffic volumes

- Many applications, e.g.:
— DoS and anomaly detection
— Flow-size aware routing

* Heavy hitters form most of the traffic
— Most important for traffic engineering
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... In the Dataplane

* Avoid traffic sampling (e.g. NetFlow)
— Slower detection time
— Possibility of false negatives

- Faster reaction time — apply actions as
packets are forwarded

- However:

— Requires (more expensive) specialized
hardware
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Problem Statement

» Given the last N packets of an incoming
stream and flow f

* Determine if f has a frequency above
threshold

* No false negatives
* Probability of false positive should be < ¢
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Additional Requirement

* Process packets as quickly as they arrive
» Severely limits processing time

* Limited memory :
— typically just one read-modify-write action per
register array

— Limited memory available per stage (~1.5MB
available for both forwarding and heavy hitter
detection app)
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Sketches

« Compact data structure
Only stores summary information
Low memory usage

Often tuneable in accuracy vs memory
usage

E.g. bloom filter
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Count-Min sketch
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Gated Sketch
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Gated Sketch
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Gated Sketch
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Window structure

« Remove outdated flows and counts from
the counting sketch

 All current dataplane approaches flush
the registers every x seconds
— Increases the number of false negatives and
false positives
— Additional actions from the control plane
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Ring Window
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Sequential Window
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New Window approach

- One memory access per register array
(read/write/modify)

* Lower memory usage
 Similar accuracy
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Congestion Control
and Avoidance
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Congestion control at transport layer
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Interoperability

- delay based algorithms can

not compete

with loss-based algorithms
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Problem statement

How to enable congestion control and
avoidance in the forwarding nodes,
instead of at the source or via a
controller?
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Hierarchical control plane
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Local congestion detection

Every network node
collects statistics for low
latency flows, such as:

* Processing delay
* Queuing delay

« Enqueue length

« Dequeue length

*  Number of packets
affected

If these values reach preconfigured thresholds,

congestion is detected!
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Congestion avoidance

* Inform the traffic sources about
congestion using ECN

* Reroute latency sensitive traffic to a non-
congested backup path
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Conclusion

- Main advantages:

— detection time is reduced and congestion is
detected per flow

— after detection, the reaction time is
minimized, as a local controller intervenes by
configuring a better route.

» Possible extension to a hybrid network
where only some nodes are
programmable
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Questions/Comments/Suggestions?

» Contact Info:
— Belma Turkovic (B.Turkovic-2@tudelft.nl)
— Jorik Oostenbrink (J.Oostenbrink@tudelft.nl)
— Fernando Kuipers (F.A.Kuipers@tudelft.nl)

24



