Congestion control
and Heavy hitter
detection

Belma Turkovic, Jorik Oostenbrink,
and Fernando Kuipers

]
TUDelft

Heavy Hitter
Detection In the
Dataplane

]
TUDelft

Heavy Hitter Detection...

* Detect flows with large traffic volumes

- Many applications, e.g.:
— DoS and anomaly detection
— Flow-size aware routing

* Heavy hitters form most of the traffic
— Most important for traffic engineering

]
TUDelft

... In the Dataplane

* Avoid traffic sampling (e.g. NetFlow)
— Slower detection time
— Possibility of false negatives

- Faster reaction time — apply actions as
packets are forwarded

- However:

— Requires (more expensive) specialized
hardware

]
TUDelft

Problem Statement

» Given the last N packets of an incoming
stream and flow f

* Determine if f has a frequency above
threshold

* No false negatives
* Probability of false positive should be < ¢

]
TUDelft

Additional Requirement

* Process packets as quickly as they arrive
» Severely limits processing time

* Limited memory :
— typically just one read-modify-write action per
register array

— Limited memory available per stage (~1.5MB
available for both forwarding and heavy hitter
detection app)

]
TUDelft

Sketches

« Compact data structure
Only stores summary information
Low memory usage

Often tuneable in accuracy vs memory
usage

E.g. bloom filter

]
TUDelft

]
TUDelft

Count-Min sketch

flow_id ——

— hash0(flow_id) /.

— hash1(flow_id)
— hash2(flow_id)

\
7
AN
4

— hash3(flow_id) —

Depth
(Number of stages)

\
7
A 4
N
7

Width

]
TUDelft

Gated Sketch

id

) (Number of stages)

Depth = 4

» hash0(id) /

—

— if(hash0(id) > th0) hash1(id) —

— if(hash1(id) > th1) hash2(id)

’ -
4

L) if(hash2(id) > th2) hash3(id)

Width_4

Gated Sketch

“Yopackets processed by Accuracy vs width second

second stage vs threshold of stage
the first stage
100 T]
80
% = 121 —e— Gated(widtho = 8192) | |
2 60 P —m— Gated(width0 = 4096)
8 z 107 —e— Gated(width0 = 2048) ||
s §‘ .
8 4 5
Z 6 —n —q
20 —e— Count-Min |
—m— Gated 4 1
0 | | | | | | | — — o S — P Py
10 20 30 40 50 60 94 -3 -2 91 90

]
TUDelft

tho [#packets)

widthy /width_0

10

]
TUDelft

Gated Sketch

Effect of Threshold on First Stage

False Positives [%]
w — w
(=} (=} o

S~
o

| |

—e— QGated
—m— Count-Min

| |
30 40 50
tho [#packets]

60

11

Window structure

« Remove outdated flows and counts from
the counting sketch

 All current dataplane approaches flush
the registers every x seconds
— Increases the number of false negatives and
false positives
— Additional actions from the control plane

5
TUDelft §

Ring Window

— hasho(flow_id3) —

index —>
—> hash2(flow_id3)

— hash1(flow_id3) ———

Width

NS

— hash3(flow_id3) —

]
TUDelft

N
h 4

yi
)

(%
4

Depth

(Number of stages)

13

]
TUDelft

Sequential Window

index = 0 pkt0

— [l

ya
N

Depth
(Number of stages)

Width

index = 1
—

(Number of stages)

pkt1

Vi
A}

N
4

Depth

Width

14

]
TUDelft

New Window approach

- One memory access per register array
(read/write/modify)

* Lower memory usage
 Similar accuracy

15

Congestion Control
and Avoidance

]
TUDelft

Congestion control at transport layer

RFC 793
I 11
> Tahoe | -
I
I
LY al = . K= __, -
 Clasification: PReno 2=y PRUALL -
5 NewReno f'—l '~ B Vegas §55'-, - Veno
— Loss-based ; ¥
5 HS-TCP |-, ~ ~ B Vegas+ |« - | Pf Westwood+
— Delay-based . i
> BIC [€==2 > VegasA k- - -' i Compaund
L] L] !
I
- Comblnatlon { H-TCP |- | | > TIMELY b Tlinois?
Pl
- CUBIC i-‘l-: > LoLa - Yeah
> Hybla - BBR

4 ~ ~ "
T U D e I ft Loss-based Delay-based Hybrid

algorithms algorithms algorithms 17

]
TUDelft

Interoperability

- delay based algorithms can

not compete

with loss-based algorithms

8
600 10

Cubic

Vegas

RTT [ms]

Throughput [bps]
=)
(9]

Vegas Cubic |

20 40 60
t[s]

18

]
TUDelft

Problem statement

How to enable congestion control and
avoidance in the forwarding nodes,
instead of at the source or via a
controller?

19

Hierarchical control plane

Central Controller
: C en t_ra I con t ro I I er — Tactile Internet Standard routing
Configures and Module Module
monitors paths for
different service classes Network Manager Device and
and Monitoring Packet Manager
Module Module
 Local controller —
Reduces congestion l ¢RPC/Thrift
detection and reaction § . .
. ocal Congestion Detection .
tl me fo r Iate n Cy and Avoidance Module gRPC/Thrift server
sensitive flows
P4 Switch

]
TUDelft

20

]
TUDelft

Local congestion detection

Every network node
collects statistics for low
latency flows, such as:

* Processing delay
* Queuing delay

« Enqueue length

« Dequeue length

* Number of packets
affected

If these values reach preconfigured thresholds,

congestion is detected!

— e o[[[[l¢

data

P4 Switch

Congestion Detection
and Avoidance Module

if cong.
reconfigural

AA

tproc. tque.

21

]
TUDelft

Congestion avoidance

* Inform the traffic sources about
congestion using ECN

* Reroute latency sensitive traffic to a non-
congested backup path

22

Conclusion

- Main advantages:

— detection time is reduced and congestion is
detected per flow

— after detection, the reaction time is
minimized, as a local controller intervenes by
configuring a better route.

» Possible extension to a hybrid network
where only some nodes are
programmable

]
TUDelft

23

]
TUDelft

Questions/Comments/Suggestions?

» Contact Info:
— Belma Turkovic (B.Turkovic-2@tudelft.nl)
— Jorik Oostenbrink (J.Oostenbrink@tudelft.nl)
— Fernando Kuipers (F.A.Kuipers@tudelft.nl)

24

