
1

Congestion control
and Heavy hitter
detection
Belma Turković, Jorik Oostenbrink,
and Fernando Kuipers

2

Heavy Hitter
Detection in the
Dataplane

3

Heavy Hitter Detection…

• Detect flows with large traffic volumes
• Many applications, e.g.:

– DoS and anomaly detection
– Flow-size aware routing

• Heavy hitters form most of the traffic
→ Most important for traffic engineering

4

… in the Dataplane

• Avoid traffic sampling (e.g. NetFlow)
– Slower detection time
– Possibility of false negatives

• Faster reaction time – apply actions as
packets are forwarded

• However:
– Requires (more expensive) specialized

hardware

5

Problem Statement

• Given the last N packets of an incoming
stream and flow f

• Determine if f has a frequency above
threshold

• No false negatives
• Probability of false positive should be ≤ ε

6

Additional Requirement
• Process packets as quickly as they arrive
• Severely limits processing time
• Limited memory :

– typically just one read-modify-write action per
register array

– Limited memory available per stage (~1.5MB
available for both forwarding and heavy hitter
detection app)

7

Sketches

• Compact data structure
• Only stores summary information
• Low memory usage
• Often tuneable in accuracy vs memory

usage
• E.g. bloom filter

8

Count-Min sketch

9

Gated Sketch

10

Gated Sketch
%packets processed by
second stage vs threshold of
the first stage

Accuracy vs width second
stage

11

Gated Sketch
Effect of Threshold on First Stage

12

Window structure

• Remove outdated flows and counts from
the counting sketch

• All current dataplane approaches flush
the registers every x seconds
– Increases the number of false negatives and

false positives
– Additional actions from the control plane

13

Ring Window

14

Sequential Window

15

New Window approach

• One memory access per register array
(read/write/modify)

• Lower memory usage
• Similar accuracy

16

Congestion Control
and Avoidance

17

Congestion control at transport layer

• Clasification:
– Loss-based
– Delay-based
– Combination

18

Interoperability

• delay based algorithms can not compete
with loss-based algorithms

19

Problem statement

How to enable congestion control and
avoidance in the forwarding nodes,
instead of at the source or via a
controller?

20

Hierarchical control plane

• Central controller –
Configures and
monitors paths for
different service classes

• Local controller –
Reduces congestion
detection and reaction
time for latency
sensitive flows

21

Local congestion detection
Every network node
collects statistics for low
latency flows, such as:
• Processing delay
• Queuing delay
• Enqueue length
• Dequeue length
• Number of packets

affected

If these values reach preconfigured thresholds,
congestion is detected!

22

Congestion avoidance

• Inform the traffic sources about
congestion using ECN

• Reroute latency sensitive traffic to a non-
congested backup path

23

Conclusion
• Main advantages:

– detection time is reduced and congestion is
detected per flow

– after detection, the reaction time is
minimized, as a local controller intervenes by
configuring a better route.

• Possible extension to a hybrid network
where only some nodes are
programmable

24

Questions/Comments/Suggestions?

• Contact Info:
– Belma Turković (B.Turkovic-2@tudelft.nl)
– Jorik Oostenbrink (J.Oostenbrink@tudelft.nl)
– Fernando Kuipers (F.A.Kuipers@tudelft.nl)

