
P4 for Measurement Purposes
Stateful Adventures on Tofino

RoN++, SURFnet, Utrecht
December 3, 2018

Luuk Hendriks,
Jeroen van Ingen

DACS
Design and Analysis of
Communication Systems

The Plan

• We like flow measurements: NetFlow, IPFIX

• Measurements using OpenFlow: not a success

• Is P4 a viable option?

• Goal: investigate P4’s capabilities w.r.t. flow
measurements in terms of accuracy and performance

1 / 22

P4 101

• Programmable data plane, instead of closed ASIC

• Describe how a packet should be processed

• P4: the Domain Specific Language (DSL) to do this

• Two flavours: p4 14 and p4 16

2 / 22

P4 pipeline

P4 pipeline architecture, showing the path every packet
traverses through a P4-capable device 1

1https://github.com/p4lang/tutorials/blob/
master/P4 tutorial.pdf

3 / 22

https://github.com/p4lang/tutorials/blob/master/P4_tutorial.pdf
https://github.com/p4lang/tutorials/blob/master/P4_tutorial.pdf

Testbed

Components

• Barefoot Tofino based
Wedge 100B switch
(33x100Gbps)

• Netronome 2x10G
SmartNIC

• Intel 2x40G NIC

• Generic x86 server to
house both NICs

Experience

• Hardware (compatibility)
issues:

I Netronome clashed
with server

I Netronome NIC went
FUBAR, reflashed with
help from Netronome

I Intel NIC has firmware
troubles, not 40G
capable anymore

• No other 100G device yet

→ focussed on Barefoot Tofino, starting with p4 14

4 / 22

Testbed

Components

• Barefoot Tofino based
Wedge 100B switch
(33x100Gbps)

• Netronome 2x10G
SmartNIC

• Intel 2x40G NIC

• Generic x86 server to
house both NICs

Experience

• Hardware (compatibility)
issues:

I Netronome clashed
with server

I Netronome NIC went
FUBAR, reflashed with
help from Netronome

I Intel NIC has firmware
troubles, not 40G
capable anymore

• No other 100G device yet

→ focussed on Barefoot Tofino, starting with p4 14

4 / 22

Testbed

Components

• Barefoot Tofino based
Wedge 100B switch
(33x100Gbps)

• Netronome 2x10G
SmartNIC

• Intel 2x40G NIC

• Generic x86 server to
house both NICs

Experience

• Hardware (compatibility)
issues:

I Netronome clashed
with server

I Netronome NIC went
FUBAR, reflashed with
help from Netronome

I Intel NIC has firmware
troubles, not 40G
capable anymore

• No other 100G device yet

→ focussed on Barefoot Tofino, starting with p4 14
4 / 22

Meanwhile, in BMv2

• Student working on stateful programming using the
BMv2 model 2

• Goal: assess filtering methods for DDoS scenarios

• Implemented History-Based IP filtering (HIF)

Takeaways:

• BMv2: ‘unlimited’ registers, nice for exploring, but
not representative for hardware-based solutions

• Hash collisions turned out to be a problem in this work,
causing inaccuracies

2https://github.com/JJK96/P4-filtering
5 / 22

https://github.com/JJK96/P4-filtering

Meanwhile, in BMv2

• Student working on stateful programming using the
BMv2 model 2

• Goal: assess filtering methods for DDoS scenarios

• Implemented History-Based IP filtering (HIF)

Takeaways:

• BMv2: ‘unlimited’ registers, nice for exploring, but
not representative for hardware-based solutions

• Hash collisions turned out to be a problem in this work,
causing inaccuracies

2https://github.com/JJK96/P4-filtering
5 / 22

https://github.com/JJK96/P4-filtering

Flow measurements: MA-tables
Concepts

• Define a Match-Action table where the matching is
done based on the desired flow-key (e.g., the classic
5-tuple)

• Define a Counter, e.g. of type
packets and bytes, and connect it to the table

• MA table entries can only be wri�en from the control
plane!

⇒ Leverage digests to communicate with the control
plane

6 / 22

Flow measurements: MA-tables
Concepts

• Define a Match-Action table where the matching is
done based on the desired flow-key (e.g., the classic
5-tuple)

• Define a Counter, e.g. of type
packets and bytes, and connect it to the table

• MA table entries can only be wri�en from the control
plane!

⇒ Leverage digests to communicate with the control
plane

6 / 22

Flow measurements: MA-tables
Visualisation

Data plane

MA table

Control plane

pkt

m
is
s

digest

insert

pktpktpkt

Who is first?

7 / 22

Flow measurements: MA-tables
Visualisation

Data plane

MA table

Control plane

pkt

m
is
s

digest

insert

pktpktpkt

Who is first?

7 / 22

Flow measurements: MA-tables
Visualisation

Data plane

MA table

Control plane

pkt

m
is
s

digest

insert

pktpktpkt

Who is first?

7 / 22

Flow measurements: MA-tables
Visualisation

Data plane

MA table

Control plane

pkt

m
is
s

digest

insert

pktpktpkt

Who is first?

7 / 22

Flow measurements: MA-tables
Visualisation

Data plane

MA table

Control plane

pkt

m
is
s

digest

insert

pktpktpkt

Who is first?

7 / 22

Flow measurements: MA-tables
Visualisation

Data plane

MA table

Control plane

pkt

m
is
s

digest

insert

pktpktpkt

Who is first?

7 / 22

Flow measurements: MA-tables
Visualisation

Data plane

MA table

Control plane

pkt

m
is
s

digest

insert

pktpktpkt

Who is first?

7 / 22

Flow measurements: MA-tables
Evaluation: quantification of ‘lost’ packets

8 / 22

Flow measurements: MA-tables
Evaluation: quantification of ‘lost’ packets

9 / 22

Flow measurements: MA-tables
Evaluation

• Even with a digest bu�er in the control plane, we miss a
significant number of packets

• Possibly lost digests?

• Improvements: C API instead of Python?
NOTIFY vs POLL for the digests?

→ Slow path unlikely to be capable enough to perform line
rate measurements, whatever we try

• Limited number of entries (∼10k) in MA-table

10 / 22

Flow measurements: MA-tables
Evaluation

• Even with a digest bu�er in the control plane, we miss a
significant number of packets

• Possibly lost digests?

• Improvements: C API instead of Python?
NOTIFY vs POLL for the digests?

→ Slow path unlikely to be capable enough to perform line
rate measurements, whatever we try

• Limited number of entries (∼10k) in MA-table

10 / 22

Flow measurements: MA-tables
Evaluation

• Even with a digest bu�er in the control plane, we miss a
significant number of packets

• Possibly lost digests?

• Improvements: C API instead of Python?
NOTIFY vs POLL for the digests?

→ Slow path unlikely to be capable enough to perform line
rate measurements, whatever we try

• Limited number of entries (∼10k) in MA-table

10 / 22

Flow measurements: MA-tables
Conclusions

Pro

• Based purely on p4(14)
specified concepts

• Flexible in terms of
flow-keys

Con

• Only packet and bytes

• Needs the control plane:
I slow
I vendor-specific API

• Limited no. of flow entries

11 / 22

Flow measurements: registers
Concepts

• No interaction with CPU/control plane:
‘stay in the data plane’

• Keep statistics in registers, indexed based on hashes

• Embrace the hash collision to trigger early export3

• Insert a custom header with the statistics

• Final aggregation done ‘externally’, i.e. a di�erent
machine

→ Reduce PPS and BPS, possible measuring a 100Gbps link
via a 10G link

3https://github.com/jsonch/p4 code
12 / 22

https://github.com/jsonch/p4_code

Flow measurements: registers
Concepts

• No interaction with CPU/control plane:
‘stay in the data plane’

• Keep statistics in registers, indexed based on hashes

• Embrace the hash collision to trigger early export3

• Insert a custom header with the statistics

• Final aggregation done ‘externally’, i.e. a di�erent
machine

→ Reduce PPS and BPS, possible measuring a 100Gbps link
via a 10G link

3https://github.com/jsonch/p4 code
12 / 22

https://github.com/jsonch/p4_code

Flow measurements: registers
Concepts

• No interaction with CPU/control plane:
‘stay in the data plane’

• Keep statistics in registers, indexed based on hashes

• Embrace the hash collision to trigger early export3

• Insert a custom header with the statistics

• Final aggregation done ‘externally’, i.e. a di�erent
machine

→ Reduce PPS and BPS, possible measuring a 100Gbps link
via a 10G link

3https://github.com/jsonch/p4 code
12 / 22

https://github.com/jsonch/p4_code

Flow measurements: registers
Hash ≈ flow-key

• Calculate hash based on ‘flow-key’, i.e. 5-tuple

• Update multiple registers using this hash:
I reg srcip, reg dstip, reg proto, etc
I reg packets
I reg bytes
I reg tstart

• Determine whether a collision occurs via the srcip
(etc.) registers.

• Collision? Export what is in the registers, start over with
the new (colliding) flow.

13 / 22

Flow measurements: registers
Visualisation

src ip dst ip proto pkt bytes tstart

pkt

hash(src, dst, proto) = 0x15

pktpktpkt
pkt

pkt.src ip != reg.src ip
⇒ export pkt,

overwrite/reset with pkt

14 / 22

Flow measurements: registers
Visualisation

src ip dst ip proto pkt bytes tstart

pkt

hash(src, dst, proto) = 0x15

pktpktpkt
pkt

pkt.src ip != reg.src ip
⇒ export pkt,

overwrite/reset with pkt

14 / 22

Flow measurements: registers
Visualisation

src ip dst ip proto pkt bytes tstart

pkt

hash(src, dst, proto) = 0x15

pktpktpkt

pkt

pkt.src ip != reg.src ip
⇒ export pkt,

overwrite/reset with pkt

14 / 22

Flow measurements: registers
Visualisation

src ip dst ip proto pkt bytes tstart

pkt

hash(src, dst, proto) = 0x15

pktpktpkt
pkt

pkt.src ip != reg.src ip
⇒ export pkt,

overwrite/reset with pkt

14 / 22

Flow measurements: registers
Visualisation

src ip dst ip proto pkt bytes tstart

pkt

hash(src, dst, proto) = 0x15

pktpktpkt
pkt

pkt.src ip != reg.src ip

⇒ export pkt,
overwrite/reset with pkt

14 / 22

Flow measurements: registers
Visualisation

src ip dst ip proto pkt bytes tstart

pkt

hash(src, dst, proto) = 0x15

pktpktpkt
pkt

pkt.src ip != reg.src ip
⇒ export pkt,

overwrite/reset with pkt

14 / 22

Flow measurements: registers
Visualisation

src ip dst ip proto pkt bytes tstart

pkt

hash(src, dst, proto) = 0x15

pktpktpkt
pkt

pkt.src ip != reg.src ip
⇒ export pkt,

overwrite/reset with pkt

14 / 22

Flow measurements: registers
(Looking for) Problems

• Existing work is based on Netronome, in p4 14

• p4 16 support in latest Barefoot SDE!

New in p4 16 (w.r.t. registers):

• Abstraction (extern) seemingly allows easier
implementation of the ALU blackbox operations.

• Unfortunately, as of yet this results in unclear error
messages containing references to external/invisible code

error:
Incompatible outputs in RegisterAction: alu hi
and alu lo

15 / 22

Flow measurements: registers
(Looking for) Problems

• Existing work is based on Netronome, in p4 14

• p4 16 support in latest Barefoot SDE!

New in p4 16 (w.r.t. registers):

• Abstraction (extern) seemingly allows easier
implementation of the ALU blackbox operations.

• Unfortunately, as of yet this results in unclear error
messages containing references to external/invisible code

error:
Incompatible outputs in RegisterAction: alu hi
and alu lo

15 / 22

Flow measurements: registers
(Looking for) Problems

• Existing work is based on Netronome, in p4 14

• p4 16 support in latest Barefoot SDE!

New in p4 16 (w.r.t. registers):

• Abstraction (extern) seemingly allows easier
implementation of the ALU blackbox operations.

• Unfortunately, as of yet this results in unclear error
messages containing references to external/invisible code

error:
Incompatible outputs in RegisterAction: alu hi
and alu lo

15 / 22

Being put o� by 1

error: expression too complex for stateful alu
read pkt = flow.pkt + 1;

16 / 22

Flow measurements: registers
Experiences while developing

• Fiddling with apply / tables / actions /
RegisterActions

• p4c can only compile into ‘single stage actions’

• p4 16 support is really new, hopefully things improve

→ Use the available TNA model while developing!

• Hash collision trick not working with current p4c

On the positive side:

• Managed to implement packets, bytes, start/end times

• Export is easy with the new deparser in p4 16

17 / 22

Flow measurements: registers
Experiences while developing

• Fiddling with apply / tables / actions /
RegisterActions

• p4c can only compile into ‘single stage actions’

• p4 16 support is really new, hopefully things improve

→ Use the available TNA model while developing!

• Hash collision trick not working with current p4c

On the positive side:

• Managed to implement packets, bytes, start/end times

• Export is easy with the new deparser in p4 16

17 / 22

Flow measurements: registers
Experiences while developing

• Fiddling with apply / tables / actions /
RegisterActions

• p4c can only compile into ‘single stage actions’

• p4 16 support is really new, hopefully things improve

→ Use the available TNA model while developing!

• Hash collision trick not working with current p4c

On the positive side:

• Managed to implement packets, bytes, start/end times

• Export is easy with the new deparser in p4 16

17 / 22

Flow measurements: registers
(Concessions for) Evaluation

• Export on every third packet:
I Simply add in our statistics header

• Forward everything out of one interface
→ Allow both testing of

I actual forwarding (is anything dropped?)
I aggregation on the third packets (complete, accurate

statistics?)

18 / 22

Flow measurements: registers
Evaluation

Generated tra�ic + tcpreplay:

• Single flow, 300k packets
(we need N × 3 packets)

• Max replay speed, approx. 150kpps

Result:

• It works!

• Everything is forwarded.

• Statistics (packet and byte counters) are correct.

19 / 22

Flow measurements: registers
Evaluation

Generated tra�ic + tcpreplay:

• Single flow, 300k packets
(we need N × 3 packets)

• Max replay speed, approx. 150kpps

Result:

• It works!

• Everything is forwarded.

• Statistics (packet and byte counters) are correct.

19 / 22

Flow measurements: registers
Conclusions

• Promising, but much future work (next slide).

• ‘If it compiles, it works at line rate’ seems to be true.

• If it compiles.

20 / 22

Flow measurements with P4
Conclusions

• Incorporating the control plane (i.e. MA-tables) not
scalable (limited table entries, incomplete statistics)

• Register-based is (still) quite cumbersome to implement
(on Tofino in p4 16).

• But register-based is the way to go:
I complete, accurate statistics
I allows for more stats than just packets and bytes

Development on Tofino:

• Maybe a bit early to develop using p4 16

• Barefoot support is great (thank you Vladimir!)

21 / 22

Flow measurements with P4
Conclusions

• Incorporating the control plane (i.e. MA-tables) not
scalable (limited table entries, incomplete statistics)

• Register-based is (still) quite cumbersome to implement
(on Tofino in p4 16).

• But register-based is the way to go:
I complete, accurate statistics
I allows for more stats than just packets and bytes

Development on Tofino:

• Maybe a bit early to develop using p4 16

• Barefoot support is great (thank you Vladimir!)

21 / 22

Future work

• Proper export based on hash collision

• Actual aggregation on external machine

• Find limits of flow-keys (i.e. fields passed to hash calc
function)

• �antify the no. of flows vs hash collision rate

• Determine how much we can actually reduce PPS/BPS
(a�ected by hash collision rate)

22 / 22

P4 for Measurement Purposes
Stateful Adventures on Tofino

RoN++, SURFnet, Utrecht
December 3, 2018

Luuk Hendriks,
Jeroen van Ingen

DACS
Design and Analysis of
Communication Systems

