
Open Hardware and Software for
networking

SONiC NOS evaluation

 Łukasz Makowski Paola Grosso
 makowski@uva.nl pgrosso@uva.nl

Open networking
● Cost reduction
● No vendor lock-in
● Common NOS → unified management

22

Hardware X Hardware Y

Network OS

Control & Mgmt Plane

Hardware Z

Open networking: it’s a fact
● LINX: https://www.edge-core.com/news-inquiry.php?id=302
● NTT: https://cumulusnetworks.com/customers/ntt/
● Cisco working on getting IOS XR running with OCP hardware

33

Hardware X Hardware Y

Network OS

Control & Mgmt Plane

Hardware Z

https://www.edge-core.com/news-inquiry.php?id=302
https://cumulusnetworks.com/customers/ntt/

Network Operating Systems (NOS)
- There is a variety of vendors offering white-box network hardware with the

combination with commercial NOS, such as:
- Cumulus Linux
- IPinfusion OcNOS
- PicaOS
- …

- These OSes are composed of closed source components limiting the user’s
freedom and extensibility

- It is beneficial to have an open-source alternative

- Are there any community supported open-source NOS?

Open-source NOS
- Open Network Linux (ONL)

- Extensive platform support but not a complete NOS

- Azure SONiC
- Extensive platform support
- Focused on cloud environments (limited feature-set)

- Open Switch (OPX)
- Almost only Dell networking hardware
- Feature-set focused on general use cases

Our focus

Research questions
1. How feasible is to use SONiC outside of cloud environment?

a. Can one add new features/protocols
b. Is there a “grey” area? i.e. features not officially supported but working without a great effort

2. How seamless/transparent is the multi-platform support?

Switch Abstraction Interface
● One API to rule them all (ASICs)

https://github.com/opencomputeproje
ct/SAI

SAI is the initiative to create a vendor
independent ASIC programming API

77

SAI

https://github.com/opencomputeproject/SAI
https://github.com/opencomputeproject/SAI

SONiC architecture: life of routing entry

https://github.com/Azure/SONiC/wiki/Architecture

1

2

3

4

1

2

3

4

Experiments
1. Pluggables support
2. ACL support
3. Including extra features

a. OSPF (Open Shortest Path First) with FRR (Free Range Routing)
b. STP (Spanning Tree Support)

Mellanox SN2100 (Mellanox Spectrum) Arista 7050QX-32S (Broadcom Trident2)

Pluggables support

QSFP+ optics
DAC breakout cable

DAC QSA

Pluggables support: Method & Results

Type Arista Mellanox

40G DAC OK OK

100G DAC N/A OK

40G LR4 optic OK OK

100G LR4 optic N/A OK

4x10G breakout CAPABLE OK

10G LR4 optic+
QSA

CAPABLE OK

Pluggables support: breakout and QSA adapters
● From the configuration point of view breakout-cable and QSA adapter does

not differ too much. Both are about splitting/filtering-out the lanes of QSFP
port.

● Mellanox: hence the configuration of breakout was supported, we managed to
use QSA in the similar way

● Arista/Broadcom: neither is supported, however it must be possible (as
commercial NOSes support it). The work around is to bypass SAI and try
adjusting the ASIC directly.

Pluggables support: breakout and QSA adapters (cont.)

root@sonic:/etc/bcm# head -20 /etc/bcm/td2-a7050-qx32s-32x40G.config.bcm | grep .
#/**
*
* File: config.bcm.clearlake (7050-QX32S)
* Name:
*
* Description: This file contains SDK properties for an Arista
* Clearlake platform.
*
*---
**/
##
BCM Config file for Clearlake platform
- 32x40g Portmode
ALPM enable
l3_alpm_enable=2
ipv6_lpm_128b_enable=1
l2_mem_entries=32768
l3_mem_entries=16384

Pluggables support: breakout and QSA adapters (cont.II)

root@sonic:/etc/bcm# grep '_5\.' /etc/bcm/td2-a7050-qx32s-32x40G.config.bcm --color
phy_an_c37_5.0=3
phy_an_c73_5.0=0
phy_xaui_rx_polarity_flip_5.0=0x0
phy_xaui_tx_polarity_flip_5.0=0x0
port_init_autoneg_5.0=0
port_phy_addr_5.0=0x7f
portmap_5.0=13:40
serdes_firmware_mode_5.0=2
xgxs_rx_lane_map_5.0=0x0321
xgxs_tx_lane_map_5.0=0x0321
serdes_pre_driver_current_lane0_5.0=0x7
serdes_driver_current_lane0_5.0=0x7
serdes_preemphasis_lane0_5.0=0xc2f0
serdes_pre_driver_current_lane1_5.0=0x7
serdes_driver_current_lane1_5.0=0x7
serdes_preemphasis_lane1_5.0=0xc2f0
serdes_pre_driver_current_lane2_5.0=0x7
serdes_driver_current_lane2_5.0=0x7
serdes_preemphasis_lane2_5.0=0xc2f0
serdes_pre_driver_current_lane3_5.0=0x7
serdes_driver_current_lane3_5.0=0x7
serdes_preemphasis_lane3_5.0=0xc2f0

Parameters manual:

https://broadcom-switch.github.io/OpenNSL/
doc/html/OPENNSL_CUSTOMIZING_OPEN
NSL.html

https://broadcom-switch.github.io/OpenNSL/doc/html/OPENNSL_CUSTOMIZING_OPENNSL.html
https://broadcom-switch.github.io/OpenNSL/doc/html/OPENNSL_CUSTOMIZING_OPENNSL.html
https://broadcom-switch.github.io/OpenNSL/doc/html/OPENNSL_CUSTOMIZING_OPENNSL.html

ACL support: Types of ACLs

CONTROL-PLANE ACL

DATA-PLANE ACL

Data-plane ACL support: Method

● Adapted SONIC testing framework
available in the sonic-mgmt repository
(https://github.com/Azure/sonic-mgmt)

1. ACL config is applied on the DUT
2. PTF generates a packet which is

destined to the second interface
of a server

3. Depending on the scenario, it is
expected the packet will or will
not arrive

https://github.com/Azure/sonic-mgmt

Data-plane ACL support (cont.)
TEST TYPE ARISTA MELLANOX

Verify source IP match

IPv4 + IPv6 IPv4 only

Verify destination IP match

Verify L4 source port match

Verify L4 destination port match

Verify ip protocol match

Verify TCP flags match

Verify source port range match

Verify destination port range match

Verify rules priority

Verify IP protocol & source IP match

Verify source IP match - UDP packet and UDP
protocol

Control-plane ACL

● Arista ACL were based on
sshd and snmpd daemons
configuration features

● Mellanox ACL are
converted to iptables rules

● Both platforms supported
filtering based on the
source IPv4 and IPv6
addresses

Type Arista Mellanox

SSH IPv4+IPv6 IPv4+IPv6

SNMP IPv4+IPv6 IPv4+IPv6

NTP n/a IPv4+IPv6

Extensibility
● Open-source NOS should allow

adding new features required in the
specific use-case

● For SONiC, in case of adding a new
protocol we foresee the following
steps:
a. PDU CPU trap. Protocol-specific

packets/frames trapping towards CPU.
b. Control-plane application. A control-plane

application implementing given protocol.
c. State syncer. Component syncing the state

a control-plane application calculated
against the ASIC-attached ports.

P
A
C
K
E
T

OSPF PDU

MATCH:
- OSPF

ACTION:
- TRAP TO CPU

ospfd

S
T
A
T
E

Extensibility: OSPF with FRR
A. Configuring CPU TRAP

 {

 "COPP_TABLE:trap.group.ospf": {

 "trap_ids": "ospf",

 "trap_action":"trap",

 "trap_priority":"10",

 "queue": "4" },

 "OP": "SET"

 }

B. Deploying FRR + enabling OSPF

● FRR has already been an optional component of SONiC. We compiled a
new OS image including it.

● Enabling ospfd processes is trivial.

Extensibility: OSPF with FRR (cont.)
C. Syncer

● The routes computed by ospfd need to be programmed in the ASIC
● Fortunately, SONiC already implements such for the purpose of bgpd

admin@sonic:~$ vtysh -c 'sh ip rou'
#output omitted
O>* 200.1.1.1/32 [110/20] via 10.33.0.2, Vlan333, 2d02h53m
O>* 201.1.1.1/32 [110/20] via 10.34.0.2, Vlan334, 2d02h54m
O>* 202.1.1.1/32 [110/20] via 10.35.0.2, Vlan335, 2d02h53m
O>* 203.1.1.1/32 [110/20] via 10.36.0.2, Vlan336, 2d02h53m
O>* 204.1.1.1/32 [110/20] via 10.37.0.2, Vlan337, 2d02h53m

Extensibility: STP
A. Configuring CPU TRAP

 {

 "COPP_TABLE:trap.group.stp": {

 "trap_ids": "stp",

 "trap_action":"trap",

 "trap_priority":"4",

 "queue": "4"

 },

 "OP": "SET"

 }

● Mellanox: no problem, can observe the STP packets with tcpdump :-)
● Arista/Broadcom: :-(

syncd_main: Runtime error: :- processEvent: failed to execute api: create, key:

SAI_OBJECT_TYPE_HOSTIF_TRAP:oid:0x220000000005e5, status: SAI_STATUS_NOT_IMPLEMENTED

Extensibility: STP (cont.)
B. STP application: linux-bridge, mstpd (user-space STP daemon)

C. Syncing STP calculated state back to the ASIC

● No piggybacking anymore, would need to develop the syncer
● Verify if SAI adapters from Broadcom and Mellanox support SAI STP API:

○ Mellanox :-)
○ Broadcom :-(

Conclusions
● Despite its focus on cloud environments, we believe that it has the potential to

be used in regular data-center networks. Nevertheless, SONIC is definitely
not a feature-rich NOS comparable with major vendor software.

● SAI provides a significant degree of flexibility while implementing the ASIC
control-code working over multiple vendors.

○ Commonly used features can be expected to be well tested and work without issues.
○ The differences between the SAI specification and what is actually implemented by vendors

exist e.g. lack of port breakout support or STP API on Arista platform.

Future work
● Cooperation with Astron on using SAI/P4 programmable devices in

SKA/LOFAR system
● Analysis of new products:

○ New open NOS projects announced
■ Stratum by Google
■ DANOS by AT&T

○ New ASIC vendors
■ Marvell
■ Centec
■ Nephos

