P4air Congestion Control

Belma Turkovic and Fernando Kuipers

Background

- New transport protocols MPTCP, MPQUIC
- New congestion control algorithms BBR (2016), TCP LoLa (2017), ...
- QUIC enables quick development of new transport features
- Congestion control algorithms typically developed in <u>isolation -> fairness issues</u>

Outline

- Evaluation of multi-path congestion control using MPTCP and MPQUIC
- Evaluation of different AQMs and queue management techniques available in the Linux kernel
- Investigating how a P4 switch can be used to identify different congestion control algorithms – P4air

MPTCP and MPQUIC

Experimental Evaluation – Setup

- The bandwidth between nodes 1/3 and 2/4 (bottleneck) is limited
- Delays on links between nodes 3 and 4, as well as node 2 and nodes S_i were artificially increased using Linux TC
- Transport protocol: MPTCP and MPQUIC

Baseline performance

- BBR is not able to utilize the second link fully
- MPTCP flows achieved a higher sending rate than MPQUIC flows

B		
Ϋ́ι	JDe	elft

Protocol	Group	Algorithm	Link 1 Average throughput $[Mbps]$	Link 2 Average throughput $[Mbps]$
		LIA	98.37	98.72
	Coupled	OLIA	98.11	98.64
	Coupled	BaLIA	97.96	98.39
		Wvegas	98.81	98.72
		Reno	98.45	98.66
		BIC	98.79	98.85
		Cubic	98.67	98.71
	Loss-based	HS-TCP	98.78	98.86
) toman		HTCP	98.37	98.72
MPTCP		Hybla	97.03	98.02
		Westwood	98.75	98.86
	Delay-based	Vegas	98.84	98.75
	Delay-based	LoLa	98.81	98.81
		Veno	97.97	98.54
		Illinois	98.15	98.62
		YeAH	98.78	97.96
	Hybrid	BBR	97.45	45.48
		DCTCP	97.25	98.42
MPQUIC	Coupled	OLIA	73.45	73.48
MPQUIC	Loss-based	Cubic	69.51	72.33

Difference in bandwidth of the two links

 MPQUIC was sensitive to large differences in bandwidth available on both paths

Protocol	Group	Algorithm	Link 1(20Mbps) Average throughput [Mbps]	Link 2(100Mbps) Average throughput $[Mbps]$
		LIA	19.78	98.86
	Coupled	OLIA	19.79	98.89
	Coupled	BaLIA	19.80	98.90
		Wvegas	19.78	98.81
		Reno	19.79	98.93
		BIC	19.80	98.90
		Cubic	19.78	98.85
	Loss-based	HS-TCP	19.79	98.92
		HTCP	19.79	98.87
MPTCP		Hybla	19.78	98.87
		Westwood	19.74	98.86
	Delay-based	Vegas	19.79	98.88
	Delay-based	LoLa	19.79	98.85
		Veno	19.79	98.84
		Illinois	19.78	98.87
		YeAH	19.79	97.90
	Hybrid	BBR	19.78	72.43
		DCTCP	19.78	98.86
MPQUIC	Coupled	OLIA	10.76	65.50
MPQUIC	Loss-based	Cubic	18.23	25.09

Difference in RTTs between two sub-flows

 Sub-flow on the link that had the higher RTT experienced a drop in the sending rate

Protocol	Group	Algorithm	Link 1 (100ms) Average throughput [Mbps]	Link 2 (0ms) Average throughput [Mbps]
		LIA	56.50	94.73
	Coupled	OLIA	64.51	96.95
	Coupica	BaLIA	91.90	97.21
		Wvegas	93.56	93.16
		Reno	67.80	96.78
		BIC	24.13	95.84
		Cubic	42.44	92.04
	Loss-based	HS-TCP	92.97	96.90
		HTCP	78.80	94.97
MPTCP		Hybla	93.07	96.77
		Westwood	53.55	55.55
	Delay-based	Vegas	95.47	92.86
	Delay-based	LoLa	92.66	94.50
		Veno	93.31	96.82
		Illinois	90.89	97.56
		YeAH	95.90	95.40
	Hybrid	BBR	91.19	43.28
		DCTCP	82.39	96.01
MPOLIIC	Coupled	OLIA	25.20	85.73
MPQUIC	Loss-based	Cubic	17.34	88.30

Fairness

 Inter/RTT-fairness issues present in traditional TCP (or QUIC) are also present between different MPTCP/MPQUIC sub-flows

Evaluation of AQMs

Experimental Evaluation – Setup

- The bandwidth between nodes 1 and 2 (bottleneck) is limited
- On the output link (from node 1 to 2) an AQM mechanism was configured with the use of Linux TC
- Transport protocol: TCP
- AQMs: CoDel, FQ_CoDel, RED, PIE, RED, RED+SFQ

Inter-fairness

- AQMs mostly target loss-based algorithms, significantly improving their fairness properties
- The performance of hybrid algorithms decreased or remained the same

RTT-fairness

 AQMs usually decrease the already bad RTT-fairness properties of most algorithms

	Reno	BIC	Cubic	HS-TCP	HTCP	Hybla	Westwood	Vegas	LoLa	Veno	Illinois	YeAH	BBR	DCTCP
0	0.99	0.99	0.99	0.98	0.99	0.99	0.99	0.99	0.97	0.97	0.97	0.98	0.97	0.98
20	0.85	0.74	0.84		0.94	0.89	0.86	0.83	0.73	0.91	0.92	0.86	0.56	0.84
40	0.74	0.68	0.80	0.70	0.89	0.89	0.77	0.82	0.59	0.85	0.82		0.54	0.75
60	0.69	0.66	0.72	0.67	0.88	0.94	0.71		0.59	0.83		0.74	0.55	0.69
80	0.67	0.63	0.75	0.62	0.87	0.95	0.69	0.82	0.59	0.80	0.74	0.74	0.56	0.66
100	0.66	0.63	0.73	0.59	0.84	0.95	0.65	0.80	0.62	0.79	0.80	0.73	0.56	0.65
120	0.60	0.60	0.82	0.59	0.82	0.96	0.63	0.82	0.56	0.78	0.82	0.74	0.58	0.60
140	0.59	0.59	0.78	0.57	0.80	0.95	0.61	0.85	0.57	0.76	0.83	0.71	0.57	0.60
160	0.60	0.58	0.76	0.56	0.79	0.95	0.59	0.72	0.55	0.75	0.83	0.69	0.58	0.60
180	0.59	0.56	0.78	0.56	0.74	0.95	0.59	0.81	0.55	0.72		0.82	0.58	0.59
200	0.58	0.55	0.73	0.54	0.70	0.95	0.57	0.77	0.54	0.74	0.78	0.90	0.59	0.58
	Reno	BIC	Cubic	HS-TCP	HTCP	Hybla	Westwood	Vegas	LoLa	Veno	Illinois	YeAH	BBR	DCTCP
0	0.96	0.93	0.94	0.94	0.94	0.94	0.95	0.95	0.93	0.94	0.94	0.94	0.94	0.94
20	0.96 0.75	0.93 0.76	0.94 0.75	0.94 0.75	0.94 0.76	0.94 0.73	0.95 0.94	0.95	0.93	0.94	0.94 0.85	0.94	0.94	0.94
20 40	0.96 0.75 0.66	0.93 0.76 0.69	0.94 0.75 0.68	0.94 0.75 0.63	0.94 0.76 0.65	0.94 0.73 0.72	0.95 0.94 0.84	0.95 0.89 0.91	0.93 0.69 0.58	0.94 0.73 0.63	0.94 0.85 0.66	0.94 0.87 0.89	0.94 0.57 0.56	0.94 0.76 0.65
20 40 60	0.96 0.75 0.66 0.61	0.93 0.76 0.69 0.64	0.94 0.75 0.68 0.64	0.94 0.75 0.63 0.60	0.94 0.76 0.65 0.67	0.94 0.73 0.72 0.73	0.95 0.94 0.84 0.75	0.95 0.89 0.91 0.84	0.93 0.69 0.58 0.60	0.94 0.73 0.63 0.62	0.94 0.85 0.66 0.64	0.94 0.87 0.89 0.82	0.94 0.57 0.56 0.57	0.94 0.76 0.65 0.61
20 40 60 80	0.96 0.75 0.66 0.61 0.58	0.93 0.76 0.69 0.64 0.61	0.94 0.75 0.68 0.64 0.62	0.94 0.75 0.63 0.60 0.58	0.94 0.76 0.65 0.67 0.64	0.94 0.73 0.72 0.73 0.73	0.95 0.94 0.84 0.75 0.71	0.95 0.89 0.91 0.84 0.84	0.93 0.69 0.58 0.60 0.65	0.94 0.73 0.63 0.62 0.62	0.94 0.85 0.66 0.64 0.60	0.94 0.87 0.89 0.82 0.79	0.94 0.57 0.56 0.57 0.56	0.94 0.76 0.65 0.61 0.58
20 40 60 80 100	0.96 0.75 0.66 0.61 0.58 0.57	0.93 0.76 0.69 0.64 0.61	0.94 0.75 0.68 0.64 0.62 0.63	0.94 0.75 0.63 0.60 0.58 0.57	0.94 0.76 0.65 0.67 0.64 0.64	0.94 0.73 0.72 0.73 0.73 0.76	0.95 0.94 0.84 0.75 0.71 0.71	0.95 0.89 0.91 0.84 0.84 0.84	0.93 0.69 0.58 0.60 0.65 0.60	0.94 0.73 0.63 0.62 0.62 0.59	0.94 0.85 0.66 0.64 0.60 0.60	0.94 0.87 0.89 0.82 0.79 0.78	0.94 0.57 0.56 0.57 0.56 0.57	0.94 0.76 0.65 0.61 0.58 0.59
20 40 60 80 100 120	0.96 0.75 0.66 0.61 0.58 0.57 0.57	0.93 0.76 0.69 0.64 0.61 0.61 0.60	0.94 0.75 0.68 0.64 0.62 0.63 0.61	0.94 0.75 0.63 0.60 0.58 0.57	0.94 0.76 0.65 0.67 0.64 0.64	0.94 0.73 0.72 0.73 0.73 0.76	0.95 0.94 0.84 0.75 0.71 0.71 0.66	0.95 0.89 0.91 0.84 0.84 0.84	0.93 0.69 0.58 0.60 0.65 0.60 0.58	0.94 0.73 0.63 0.62 0.62 0.59	0.94 0.85 0.66 0.64 0.60 0.60 0.66	0.94 0.87 0.89 0.82 0.79 0.78	0.94 0.57 0.56 0.57 0.56 0.57 0.58	0.94 0.76 0.65 0.61 0.58 0.59
20 40 60 80 100 120 140	0.96 0.75 0.66 0.61 0.58 0.57 0.57	0.93 0.76 0.69 0.64 0.61 0.61 0.60 0.58	0.94 0.75 0.68 0.64 0.62 0.63 0.61	0.94 0.75 0.63 0.60 0.58 0.57 0.57	0.94 0.76 0.65 0.67 0.64 0.64 0.64 0.63	0.94 0.73 0.72 0.73 0.73 0.76 0.76	0.95 0.94 0.84 0.75 0.71 0.71 0.66 0.65	0.95 0.89 0.91 0.84 0.84 0.84 0.85 0.88	0.93 0.69 0.58 0.60 0.65 0.60 0.58	0.94 0.73 0.63 0.62 0.62 0.59 0.59 0.58	0.94 0.85 0.66 0.64 0.60 0.60 0.66 0.66	0.94 0.87 0.89 0.82 0.79 0.78 0.74	0.94 0.57 0.56 0.57 0.56 0.57 0.58 0.60	0.94 0.76 0.65 0.61 0.58 0.59 0.57
20 40 60 80 100 120	0.96 0.75 0.66 0.61 0.58 0.57 0.57	0.93 0.76 0.69 0.64 0.61 0.61 0.60	0.94 0.75 0.68 0.64 0.62 0.63 0.61	0.94 0.75 0.63 0.60 0.58 0.57	0.94 0.76 0.65 0.67 0.64 0.64	0.94 0.73 0.72 0.73 0.73 0.76	0.95 0.94 0.84 0.75 0.71 0.71 0.66	0.95 0.89 0.91 0.84 0.84 0.84	0.93 0.69 0.58 0.60 0.65 0.60 0.58	0.94 0.73 0.63 0.62 0.62 0.59	0.94 0.85 0.66 0.64 0.60 0.60 0.66	0.94 0.87 0.89 0.82 0.79 0.78	0.94 0.57 0.56 0.57 0.56 0.57 0.58	0.94 0.76 0.65 0.61 0.58 0.59

P4air

P4air

- All flows on a switch are classified into 2+3k groups:
 - ant flows
 - mice flows
 - k loss-based flows
 - k delay-based flows
 - k hybrid-based flows

Metrics

- Each switch keeps track of the following statistics for each RTT interval:
 - number of processed packets,
 - number of processed ACK packets,
 - maximum queuing delay experienced in the current RTT interval,
 - number of dropped packets as the difference between packets processed in the ingress and egress pipeline

Example: Maximum queuing delay

- Loss-based algorithm is building a queue, without reacting to it
- Delay-based algorithms avoid the queue-buildup
- BBR algorithm periodically builds a small queue

Detecting the end of the slow-start

Two possible indicators:

- The first loss
- When the number of packets sent in one RTT stops increasing

Conclusion

- Programmable switches can be used to determine the type of congestion control algorithms used by a flow
- In the future, we plan to investigate if applying different actions to different groups could increase the fairness among different congestion control groups

Questions/Comments/Suggestions?

- Contact Info:
 - Belma Turković (B.Turkovic-2@tudelft.nl)
 - Fernando Kuipers (F.A.Kuipers@tudelft.nl)

