
Accurate high-bandwidth flow measurements using P4

RoN++, SURFnet, the Netherlands
January 8, 2020

Luuk Hendriks
Jeroen van Ingen Schenau

DACS
Design and Analysis of
Communication Systems

Flow measurements?

Internet Router SURFnet

Flow collector

2 / 32

Challenges in flow measurements, today

Flow measurements from high-end (high-bandwidth) devices are

• opaque: we can not look into the aggregation process;

• sampled: causing inaccuracies, and the sampling algorithms themselves are not
always disclosed;

• static, inflexible: we can not configure custom flow keys.

• expensive: pricy modules / line-cards

3 / 32

Flow measurements tomorrow?

Can we use P4 to improve on that status quo?

X P41 promises flexibility at line-rate performance

• P4 is about forwarding packets, not about measurements per se

? Flow measurements require state, and state is di�icult when doing line-rate
processing at 10, 40, 100Gbps and beyond

Two ways of keeping state in P4: tables, and registers.

1P4 is a new technology/paradigm to program the dataplane
4 / 32

Tables

Match-Action Tables:

• are essential building blocks in P4
programs (e.g. a forwarding table)

• specify for each match which action
should be performed

• can have counters a�ached to them,
for packets and/or bytes

? but how do we fill these tables?

→ by learning, i.e. punting info to the
control plane,
for every newly observed flow

5 / 32

table flows_v6 {
reads {

ipv6.srcAddr: exact;
ipv6.dstAddr: exact;
ipv6.flowLabel: exact;

}
actions {

flow_miss_v6;
process_packet;

}
default_action: flow_miss_v6();
support_timeout: true;
}

action process_packet() {
// ...

}

counter flow_stats_v6 {
type: packets_and_bytes;
direct: flows_v6;

}

field_list flow_key_info {
ipv6.srcAddr;
ipv6.dstAddr;
ipv6.flowLabel;
meta.frame_size;

}

action flow_miss_v6() {
generate_digest(0, flow_key_info);

}

Data plane

6 / 32

Data plane

Source

Sink

Transit

Transit

Transit

Control plane

Collector

7 / 32

Data plane

Source

Sink

Transit

Transit

Transit

Control plane

Collector

8 / 32

While keeping track of flow statistics using Match Action tables
is easy and comes, almost for free, out-of-the-box with P4,

it does not scale.2

We just recreated the problem many devices su�er from:
requiring the slow path to do measurements.

2there are other use cases where this approach is perfectly applicable, e.g. where the flow keys are
known a priori

9 / 32

What about registers?

Registers allow us to keep state in the data plane.

Both reading and writing requires no interaction with the control plane.

10 / 32

It’s all in the data plane

Data plane

Source

Sink

Transit

Transit

Transit

11 / 32

Overview of topology

100Gbps

100Gbps
flaggr.p4

raggr

1/10 Gbps

12 / 32

P4 as part of the solution

Aim:

• Use P4 as a pre filtering/aggregation step. (flaggr)

• Then, let an external machine take care of the final aggregation and storage. (raggr)

Benefits:

• flexibility and power of a modern high-end x86 CPU

• because of the pre-aggregation, a smaller link between the switch and the external
machine su�ices.

flaggr + raggr

13 / 32

Collisions? Collisions!

What happens if a di�erent flow hashes to 0xC as well?

14 / 32

pseudo flaggr

15 / 32

// Flow key registers
reg_src_ip = Register();
reg_dst_ip = Register();
reg_proto = Register();
reg_l4 = Register();

// Flow statistics registers
reg_pkt_count = Register();
reg_byte_count = Register();
reg_time_start = Register();
reg_time_end = Register();
reg_flags = Register();

initialize_registers(hdr: PacketHeader, index:
HashIndex, md: Metadata):

reg_src_ip[index] = hdr.src_ip;
reg_dst_ip[index] = hdr.dst_ip;
reg_proto[index] = hdr.proto;
reg_l4[index] = hdr.l4;
reg_pkt_count[index] = 1;
reg_byte_count[index] = length(hdr.ethernet
) + hdr.ip_len

reg_time_start[index] = md.timestamp;
reg_time_end[index] = md.timestamp;
reg_flags[index] = hdr.tcp_flags;

with pkt = ingress.next_packet():
hdr = parse(pkt);
md = pkt.metadata;
index = hash({hdr.src_ip, hdr.dst_ip, hdr.proto, hdr.
l4});

collision =
hdr.src_ip != reg_src_ip[index]

|| hdr.dst_ip != reg_dst_ip[index]
|| hdr.proto != reg_proto[index]
|| hdr.l4 != reg_l4[index]

if collision:
// Export info and keep track of new flow
flow_record = { reg_src_ip[index],

reg_dst_ip[index],
reg_proto[index],
reg_l4[index],
reg_pkt_count[index],
reg_byte_count[index],
reg_time_start[index],
reg_time_end[index],
reg_flags[index] }

emit({hdr.ethernet, flow_record});
initialize_registers(hdr, index, md);

else:
// Update statistics of current flow
reg_pkt_count[index] += 1;
reg_byte_count[index] += length(hdr.ethernet)

+ hdr.ip_len
reg_time_end[index] = md.timestamp;
reg_flags[index] ||= hdr.tcp_flags;

That can’t be hard in P4!

Every piece of information stored requires a register. A register can only be accessed
(read and/or wri�en to) ONCE per packet.

In order to determine how we should update the statistics registers (packet counter etc.),
we first need to find out whether a collision occured in the key registers (src ip etc.).

In other words, the order accessing the registers is crucial.

16 / 32

Registers in flaggr

The actual code, as opposed to the pseudo code, is comprised of many di�erent controls.
Each control manages at least one register:

Statistics controls:

• PacketCount

• ByteCount

• FlowTimes (2 registers!)

• TcpFlags

17 / 32

control PacketCount

• operates based on a hash of the flow
key

• has two RegisterActions
I one to reset the counter to 1 (new

flow)
I one to increase the counter with 1

→ has an apply to pick one of these
actions, based on whether a collision
has been observed

? why no if in one single
RegisterAction ?

18 / 32

control PacketCount(
inout metadata_t md
){

Register<bit<32>, bit<HASH_WIDTH>>(1 << HASH_WIDTH)
flow_cache_packets;

RegisterAction<bit<32>, bit<HASH_WIDTH>, bit<32>>(
flow_cache_packets) fc_packets_reset = {

void apply(inout bit<32> current, out bit<32>
read_packets) {

read_packets = current;
current = 32w1;

}
};

RegisterAction<bit<32>, bit<HASH_WIDTH>, bit<32>>(
flow_cache_packets) fc_packets_increase = {

void apply(inout bit<32> current, out bit<32>
read_packets) {

read_packets = current;
current = current + 32w1;

}
};

apply {
if (md.clash == 1) {

md.fc_pkts = fc_packets_reset.execute(md.
hash_idx);

} else {
md.fc_pkts = fc_packets_increase.execute(md.

hash_idx);
}

}
}

raggr

• receives partial flow records

• aggregates the partials

• writes the full flow information to disk or UNIX pipe (currently, .csv)

• tells us about the reduction rate in terms of packets, bytes, number of partials, etc.

19 / 32

Evaluation: completeness

We now have a working P4-based exporter, exporting (partial) flow records
based on hash collisions, and a collector performing the final aggregation.

Evaluation time!

Method:
1. Generate 100k flows (flowgenpp), our ground truth

2. tcpreplay it through the switch
3. Compare resulting .csv to ground truth:

I ensure ALL flows from ground truth are in the measured flows
I ensure NO other flows are ‘observed’

20 / 32

Problem: Did we get all flo-

100Gbps

100Gbps
flaggr.p4

raggr

1/10 Gbps

loss?

21 / 32

Solution: Serial numbers!

• Well-known concept in existing flow
setups

• A�ach a serial number to each flow
record

• Collector can signal losses

→ In flaggr, we use a 64bit serial,
incremented on every export

22 / 32

control Serial(
inout metadata_t md
){

Register<bit<64>, bit<1>>(1) flow_serial;
RegisterAction<bit<64>, bit<1>, bit<64>>(

flow_serial) fc_serial_update = {
void apply(inout bit<64> current, out

bit<64> read_serial) {
read_serial = current;
current = current + 1;

}
};

apply {
md.serial = fc_serial_update.execute(

SERIAL_REG_INDEX);
}

}

Problem: No collision?

100Gbps

100Gbps
flaggr.p4

raggr

1/10 Gbps

stray cache entries?

23 / 32

Solution: send magic packets!

• The switch can only act upon an
incoming packet

• Force an export by sending a magic
packet

• Cache is purged, one by one,
sequentially

→ raggr sends out these probes
(EtherType 0xBEEF)

! Note that, by configuring the interval
of these probes
this can function as a poor man’s active
timeout

24 / 32

control CachePurger(
inout metadata_t md
){

Register<bit<HASH_WIDTH>, bit<1>>(1)
cache_purge_index;

RegisterAction<bit<HASH_WIDTH>, bit<1>,
bit<HASH_WIDTH>>(cache_purge_index)
cache_purge_index_update = {

void apply(inout bit<HASH_WIDTH>
current, out bit<HASH_WIDTH> read_index) {

read_index = current;
current = current + 1;

}
};

apply {
md.hash_idx = cache_purge_index_update.

execute(CACHE_PURGE_INDEX);
}

}

Evaluation: completeness

We see all the flows and nothing but the flows from the ground truth!

Statistics controls:

• PacketCount

• ByteCount

• FlowTimes (2 registers!)

• TcpFlags

Helper controls:

• Serial

• CachePurger

25 / 32

Evaluation: correctness

Are all statistics (packet/byte count, TCP flags) correct?
Some byte counters o� by 131072, some by 262144, some by 196608 …

header flow_info_h {
bit<64> serial;
flow_key_t flow_key;
bit<16> bytes; // TODO is 16 bits enough????
(...)

}

Easy fix, right?

Lesson learned: control logic (such as if) in RegisterActions is
expensive, and hard on the compiler!

26 / 32

Evaluation: Flow duration precision

Method:

• Generate 10k flows

• Send through the switch 10 times using tcpreplay

• Analyze the tend − tstart = tduration per flow, for all runs

! Replay times of all 10 runs were within 10∼20ms of eachother (as reported by
tcpreplay)

27 / 32

Flow duration precision

0

5

10

Δ(min,max) ms

10k flows, replayed 10 times, every point represents 10 runs of 1 flow

0 5 10 15 20 25 30 35 40 45 50 55

mean duration (s)

0

1

2

3

4

5

st
d

ev
 d

u
ra

ti
o

n
 (

m
s)

28 / 32

Flow duration precision

0 5 10 15
0.75

0.80

0.85

0.90

0.95

1.00

delta (min,max) duration in ms

ec
df

95.0%
 <= 2.58ms

99.9%
 <= 5.83ms

max: 13.30ms
(mean: 46s)

29 / 32

Wireformat flaggr→ raggr

p = purge bit, padding is to get at least 64byte ethernet frames

Meta information can be used to analyze the nature of tra�ic on your network, and
fine-tune your flow measurement setup. 30 / 32

Concluding

We can leverage P4 to realise more open, transparent flow measurements that are
unsampled and accurate, on high speed links.
Much more to discover:

• At which speeds does raggr start to choke …

• … and can we leverage e.g. eBPF (o�loading) to support raggr?

• Can we do these measurements for IPv6 (Tofino2) ?

• How can we do absolute timestamps instead of relative ones?

Next up:

• Get this setup published

• Release flaggr, raggr, and flowgenpp code

• Analyze nature of campus tra�ic (another paper)

31 / 32

Accurate high-bandwidth flow measurements using P4

RoN++, SURFnet, the Netherlands
January 8, 2020

Luuk Hendriks, luuk.hendriks@utwente.nl

32 / 32

DACS
Design and Analysis of
Communication Systems

