
Network Functions in SR-MPLS
environment

 Łukasz Makowski Paola Grosso
 makowski@uva.nl pgrosso@uva.nl

Intro: MPLS

Intro: SR-MPLS (1)

R1
1001

R2
1002

R3
1003

R4
1004

● Node-specific label
(Node SID) known in
the whole SR-domain

● The information about
the labels and the
topology is distributed
by an IGP
(OSPF/IS-IS)

Intro: SR-MPLS (2)

R1
1001

R2
1002

R3
1003

R4
1004

● Sending node can
specify the list of hops
which will be
traversed by a sent
packet

1002
1004

Payload

*This example assumes disabled MPLS PHP

Intro: SR-MPLS (3)

R1
1001

R2
1002

R3
1003

R4
1004

● Sending node can
specify the list of hops
which will be
traversed by a sent
packet

1004
Payload

*This example assumes disabled MPLS PHP

Per-customer NFV services

R1 R2

R3 R4

H1 H2

H3 H4

INTERNET

CUSTOMER

NFV HOST

NFV HOST

NFV1

NFV3

NFV4

NFV2

SR-MPLS

Research goals
Given the ISP SR-MPLS environment, how can per-customer services be
provided?

● Customer in charge of their own traffic

● Sinking-in selected traffic to a chosen service (NFV)

● Chaining the services together (NFV1 -> NFV2)

Services in SR network (1)
“Service Programming with Segment Routing” RFC draft
(draft-xuclad-spring-sr-service-programming-02)

● Conceptualizes the idea of running the services in SR network

● SR-aware and SR-unaware services

● SR-MPLS data plane

Services in SR network (2)

SR-unaware NFV
● NFV is just another endpoint placed

behind a PE router
○ Does not use MPLS
○ Does not have a notion of MPLS

topology

NFV

SR-MPLS

R1
1001

R2
1002

R3
1003

R4
1004

SR-aware NFV
● NFV participates in SR-MPLS

topology
○ MPLS
○ SR signaling (OSPF/IS-IS)

SR-MPLS

R1
1001

R2
1002

R3
1003

R4
1004

NFV

“Network Programming” concept (1)
SRv6 Network Programming (draft-ietf-spring-srv6-network-programming-00)
proposes the data-plane scheme for Network Programming using IPv6 protocol:

● Locator (LOC), variable-length n most significant bits. Should be routable.

● Function (FUNC), variable-length (32-bit is suggested)

● Function arguments (ARGS), variable-length, optional parameter
providing an extra input to a specific function.

“Network Programming” concept (2)

LOC

NFV HOST

NFV1

NFV2

ARG1
ARG2

“Network Programming” with MPLS
There was no NetProg dataplane
representation defined for SR-MPLS

Our approach:

● LOC: 20-bits in the top label
● Define “Extended Special-Purpose”

MPLS Label label (RFC 7274) for
NetProg

○ FUNC: 4-bits
○ ARGS: 16-bits

+-------------------------------+
| LOC | TC | S | TTL |
+-------------------------------+
| XL=15 | TC | S | TTL |
+-------------------------------+
| SR_NETPROG=255 | TC | S | TTL |
+-------------------------------+
| FUNC| ARGS | TC | S | TTL |
+-------------------------------+

Our work
1. Prototypes of SR-aware services

a. Firewall

b. Mirror

2. Dynamic SR-proxy

3. Created the virtual environment allowing the experimentation

Packet manipulation with eBPF

All prototyping done in eBPF

● eBPF has a capability of delivering
higher packet processing rates

● Required putting extra effort (e.g.
implementing own MPLS stack)

Firewall (1)
Inspired with “SERA: SEgment Routing Aware Firewall for Service Function
Chaining scenarios” paper
http://netgroup.uniroma2.it/Stefano_Salsano/papers/18-ifip-sera-firewall-sfc.pdf

● SR-aware

● 5-tuple match

● Actions:

○ BASIC: drop/accept

○ MPLS: push MPLS header

○ NetProg: pushing LOC, FUNC, ARGS headers

http://netgroup.uniroma2.it/Stefano_Salsano/papers/18-ifip-sera-firewall-sfc.pdf

Firewall (2)
Examples:

● match TCP dport 80, action: accept

● match TCP dport 8080, action: push 1013 label

● match UDP dport 666, action:

○ push LOC=1013, FUNC=MIRROR, ARGS=IDS NetProg labels

Mirror (1)
● SR-aware

● No configuration/stateless, behaviour is inferred from NetProg headers

● Mirrors received packets, the copy is sent to another function (specified as
ARGS of received packet)

Mirror (2)
● Example: Mirror the packet and send it to an IDS

MIRROR

COPY

ORIGNAL

LOC=1013,
FUNC=MIRR,
ARG=IDS

1004

1004

IDS

SR-proxy
● Required to enable the use of SR-unaware services

● Implemented MPLS dynamic SR-proxy

PROXY MPLS
PUSH

SR-unaware
network app

1013

MPLS
POP &
CACHE

1013

192.168.4.0/24192.168.3.0/24

DEMO environment

R1 R2

R3 R4
1004

H1 H2
1012

H3
1013 H4

192.168.1.0/24

INTERNET

CUSTOMER

NFV HOST

NFV HOST

192.168.2.0/24

FW

MIRR-
OR

SR-
PROXY

DEMO scenario

H1 H4

INTERNET
CUSTOMER

FW MIRR
-OR

192.168.1.2/24 192.168.4.2/24

Future work
● Evaluate load-balancing and HA scenarios for NFVs

● Performance testing

● Use a network controller to deploy SR policies

Resources
https://bitbucket.org/uva-sne/ron19_sr

(Not public, need to be a member of uva-sne on bitbucket)

https://bitbucket.org/uva-sne/ron19_sr

