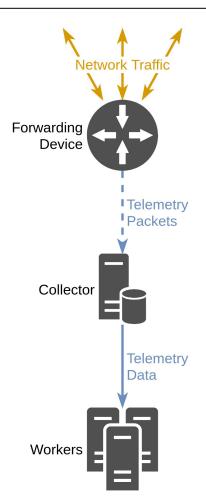
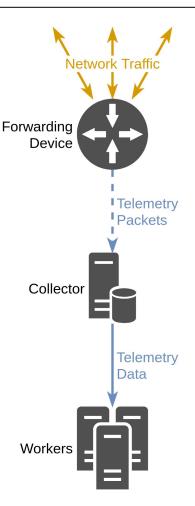


UNIVERSITY OF AMSTERDAM


**Multiscale Networked Systems** 

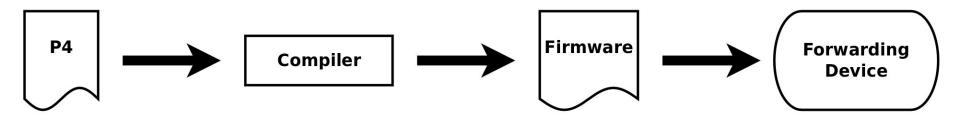
# Using P4 and RDMA to Collect Telemetry Data

Rutger Beltman, Silke Knossen, Joseph Hill, Paola Grosso


## Network Telemetry

- Importance of network telemetry
- Traditional collection methods
  - SNMP
  - netFlow
  - sFlow
- Per packet telemetry data
- Performance considerations
  - Source
  - Collector




## **Telemetry Workflow**

- General Workflow
  - Generate Telemetry Data
  - Identify Target Traffic
  - Gather Data
  - Send to Collector
  - Store Data
  - Provide Data to Analyzers
- For the Purposes of this Research
  - TCP/IP headers are used as the Telemetry Data
  - No Analysis of Telemetry Data is Performed



### P4

- Programming Protocol-Independent Packet Processors
- Domain Specific Language that describes the behavior of the data plane
- Allows for the implementation of custom protocols
- Control plane is outside of scope of the specification



## Remote Direct Memory Access (RDMA)

- Direct Access to Memory without involving CPU
- Hardware offloading
- Often used for storage
- Protocols
  - Infiniband
  - RDMA over Converged Ethernet (RoCE)
  - iWARP
- Security Concerns
  - Boundary checking
  - Isolated networks

## **Related Work**

- In-band Network Telemetry (INT) framework
- ESnet High Touch services
- Daehyeok Kim et al. "Generic External Memory for Switch Data Planes."

## RoCE v1 Packet Structure

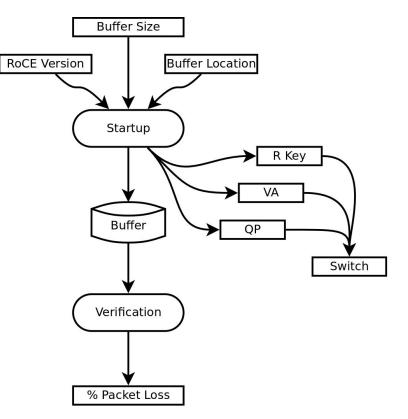
- Specific to RDMA write only
- Key Fields
  - Virtual Address (VA)
  - Remote Key (R Key)
  - Destination Queue Pair (QP)
- Derived Fields
  - Packet Sequence Number (PSN)
  - Invariant CRC

| Headers                                     | Fields            |
|---------------------------------------------|-------------------|
| Ethernet                                    |                   |
|                                             | EtherType: 0x8915 |
| Global Routing<br>Header (GRH)              |                   |
| Base Transport<br>Header (BTH)              |                   |
|                                             | Destination QP    |
|                                             |                   |
|                                             | PSN               |
| RDMA Extended<br>Transport<br>Header (RETH) | Virtual Address   |
|                                             | R Key             |
|                                             |                   |
| Payload                                     |                   |
| Invariant CRC                               |                   |

## Hardware

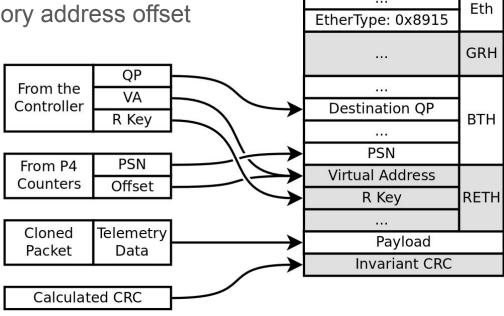
- Mellanox Connect-X5 EN NIC
  - RDMA with Infiniband, RoCE v1/2
  - Two 100 GbE Interfaces
  - Up to 200 million packets per second

#### • EdgeCore Wedge 100BF-32X switch


- Packet Generator
- P4 Forwarding Device
- Thirty-two 100 GbE Interfaces
- Up to 4.7 billion packets per second





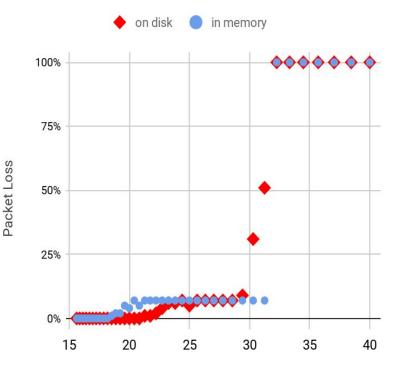

## **Collector Implementation**

- Creates RoCE session
  - Sets RoCE version
  - Buffer size
  - Memory vs Disk
- Provides RoCE parameters
  - Queue Pair (QP)
  - Remote Key (R Key)
  - Virtual Address (VA)
- Verifies received data
  - Reports packet loss



## Switch Implementation

- Parameters loaded via control plane
- Keeps track of PSN and memory address offset
- Calculates Invariant CRC
- Builds RoCE packet




**RoCE** Packet

...

## Results

- Packet loss versus packet rate
- Packet rates of 15 to 40 million pps
- 10 measurements at each packet rate
- Separate measurements for on disk and in memory buffers
- No packet loss at 15 million pps
- Less than 10% packet loss up to 30 million pps
- Packet loss increases sharply above 30 million pps



Millions of Packets per Second

## Challenges

- Not using Converged Ethernet
- Switch is not an RoCE endpoint
- Packet loss and the PSN
- Invariant CRC
  - Trailers in P4
  - Hash / Checksum functions in P4

## Future Work

- Performance optimizations
- Use RoCE Unreliable Connection
- Compare with other methods
  - DPDK
  - tcpdump
  - UDP socket
- Implement using other RDMA protocols

## Acknowledgments

• SURFnet - Research on Networks (RoN)



• Security, Stability and Transparency in inter-network Communication (2STiC)



• Energy Sciences Network (ESnet) High Touch Services

