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• New protocols and congestion control 

algorithms are continuously being 

developed

TCP complexity is increasing!
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• Deploying TCP extensions is difficult

– Can take more than a decade (e.g., 

timestamp, SACK)
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Extensions

• Deploying TCP extensions is difficult

– Can take more than a decade (e.g., 

timestamp, SACK)

• Only options:

– Socket options

– Modules
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Goal 

• Investigate how different data-plane 

techniques can be used to introduce 

programmability in the end-hosts
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Data-plane techniques
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Transport features
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eBPF

• Lightweight VM 

• Enables running sandboxed programs in 

the Linux kernel 

• No need to change kernel source-code or 

load kernel modules

Source: https://ebpf.io/

https://ebpf.io/
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eBPF evolution

• BPF

• eBPF

• Exposure to user-space

• TCP-BPF 

• Support for user-defined TCP options
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Easy to implement

Small overhead

Limited hooks

Uses the ‘‘slow’’ kernel

Needs a custom kernel
(for custom TCP options, TCP-
BPF supported since 4.15)

Limited program size
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DPDK

• Kernel bypass technique

• Set of libraries to accelerate packet 

processing

Source: https://medium.com/@lhamthomas45/dpdk-19-11-is-out-why-you-should-update-and-how-to-do-so-7395810f71e

https://medium.com/@lhamthomas45/dpdk-19-11-is-out-why-you-should-update-and-how-to-do-so-7395810f71e
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DPDK

• Tested two different frameworks:

– F-stack

– TLDK
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Debugging is difficult 
(Few tools)

Fast performance
Does not have TCP/IP 

stack out of the box

Specialized hardware

Steep learning curve
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P4

• High-level language 

• Defines how packet processors are 

configured and operated on network 

packets

Source: https://plvision.eu/wp-content/uploads/2018/10/p4.jpg

https://plvision.eu/wp-content/uploads/2018/10/p4.jpg
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23Source: p4.org 

Easy to implement

Fast performance

Limited functionality
(No floating-point arithmetic, 

limited accesses to registers)

Specialized hardware

Can have high memory 

utilization

Can only react to packets

Can be combined 

with the kernel stack
(Only offload TCP options)
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Conclusion

• Three techniques to improve the flexibility of 
the TCP stack

– Small overhead

– Increased flexibility
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P4air
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• New protocols and congestion control 

algorithms are continuously being 

developed

→ It is impossible to take their interactions 

with other protocols and algorithms into 

account

TCP complexity is increasing!
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Goal

Improve fairness between all flows present 

on a switch by grouping them based on 

their congestion control algorithm
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Goal

Improve fairness between all flows present 
on a switch by grouping them based on 
their congestion control algorithm

- From within the data-plane  

→ and by taking into account
limitations on actions and/or 

memory accesses
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• P4air: Increasing Fairness among 
Competing Congestion Control Algorithms

• Conference: IEEE ICNP 2020

• YouTube video: 
https://youtu.be/udXrPi6GVtk

P4air

https://youtu.be/udXrPi6GVtk

