
1

Improving TCP’s

performance using

programmable networks

Belma Turkovic and Fernando Kuipers
RoN++ Meeting, December 16th, 2020

2

• New protocols and congestion control

algorithms are continuously being

developed

TCP complexity is increasing!

3

Extensions

• Deploying TCP extensions is difficult

– Can take more than a decade (e.g.,

timestamp, SACK)

4

Extensions

• Deploying TCP extensions is difficult

– Can take more than a decade (e.g.,

timestamp, SACK)

• Only options:

– Socket options

– Modules

5

Goal

• Investigate how different data-plane

techniques can be used to introduce

programmability in the end-hosts

6

Data-plane techniques

7

Transport features

8

eBPF

• Lightweight VM

• Enables running sandboxed programs in

the Linux kernel

• No need to change kernel source-code or

load kernel modules

Source: https://ebpf.io/

https://ebpf.io/

9

eBPF evolution

• BPF

• eBPF

• Exposure to user-space

• TCP-BPF

• Support for user-defined TCP options

10

11

12

Easy to implement

Small overhead

Limited hooks

Uses the ‘‘slow’’ kernel

Needs a custom kernel
(for custom TCP options, TCP-
BPF supported since 4.15)

Limited program size

13

DPDK

• Kernel bypass technique

• Set of libraries to accelerate packet

processing

Source: https://medium.com/@lhamthomas45/dpdk-19-11-is-out-why-you-should-update-and-how-to-do-so-7395810f71e

https://medium.com/@lhamthomas45/dpdk-19-11-is-out-why-you-should-update-and-how-to-do-so-7395810f71e

14

DPDK

• Tested two different frameworks:

– F-stack

– TLDK

15

DPDK

• Tested two different frameworks:

– F-stack

– TLDK

16

17

Debugging is difficult
(Few tools)

Fast performance
Does not have TCP/IP

stack out of the box

Specialized hardware

Steep learning curve

18

P4

• High-level language

• Defines how packet processors are

configured and operated on network

packets

Source: https://plvision.eu/wp-content/uploads/2018/10/p4.jpg

https://plvision.eu/wp-content/uploads/2018/10/p4.jpg

19

20

21

22

23Source: p4.org

Easy to implement

Fast performance

Limited functionality
(No floating-point arithmetic,

limited accesses to registers)

Specialized hardware

Can have high memory

utilization

Can only react to packets

Can be combined

with the kernel stack
(Only offload TCP options)

24

Conclusion

• Three techniques to improve the flexibility of
the TCP stack

– Small overhead

– Increased flexibility

25

P4air

26

• New protocols and congestion control

algorithms are continuously being

developed

→ It is impossible to take their interactions

with other protocols and algorithms into

account

TCP complexity is increasing!

27

Goal

Improve fairness between all flows present

on a switch by grouping them based on

their congestion control algorithm

28

Goal Goal

Improve fairness between all flows present

on a switch by grouping them based on

their congestion control algorithm

- From within the data-plane

29

Goal

Improve fairness between all flows present
on a switch by grouping them based on
their congestion control algorithm

- From within the data-plane

→ and by taking into account
limitations on actions and/or

memory accesses

30

• P4air: Increasing Fairness among
Competing Congestion Control Algorithms

• Conference: IEEE ICNP 2020

• YouTube video:
https://youtu.be/udXrPi6GVtk

P4air

https://youtu.be/udXrPi6GVtk

