
routing with

SURF Internet Measurements and Analysis Workshop 5 April 2023 
Luuk Hendriks & Jasper den Hertog



What do we do?



Open Source Software 

Standards (IETF) 

Governance related advisory

COre internet

R
esearch

Develo
pm

ent



Open source 
Software



RPKI validator 
(“Relying Party Software”)

all singing and dancing 
delegated RPKI

multi-purpose 
DNS resolver

soon-to-be super fast authoritative 
DNS resolver





memory-safety 
strongly, statically typed 

raw performance (no garbage collection) 
composability (dependencies, modules)



ROUTING 
OBSERVABILITY



 
Relying Party 

Software

validated 
cache

BGP session

prefix 
filters

RTR 
protocol



prefix 
filters

Event-based 
reevaluation of 
import policy

BGP routing 
table

Route Validation 
Database

 
Relying Party 

Software

validated 
cache

out of 
sync

(from the juniper docs)

what is this 
thing even 

doing to my 
routes??!?



A solution



 
Relying Party 

Software

validated 
cache

 
PREFIX 
FILTERS

lots of processing & 
slow update cycle 



A better solution



 
PREFIX 
FILTERS

 
Relying Party 

Software

validated 
cache

needs RTR 
next gen



Another solution



 
PREFIX 
FILTERS

 
Relying Party 

Software

validated 
cache

BMP 
COLLECTOR

needs a high-performance, 
scalable, real-time streaming, 
stateful collector





 
PREFIX 
FILTERS 

Relying Party 
Software

validated 
cache

BMP 
COLLECTOR

 
PREFIX 
FILTERS  

Relying Party 
Software

validated 
cache

rtrtr



anatomy of a 
collector



rotoro(A)

rotororotoro

rotoro

ws

mqttrotoro(A∪B)rotoro(A)

rotoro(B)

rotoro(A)

rotoro(A)

rotoro(A)

rotoro(A)

shell API

metrics API

shell API

metrics API

rotoro rotororotoro

rotoro

∪x

bgp

bmp

RUNTIMES

STORAGE

single input

broadcast merge

multiple input input transformers

output transformers

CHANNEL OPERATORS

TRANSFORMERScomposable 
runtimes

combine into single runtime

multiple runtimes connected 
by RTR-inspired protocol 
(codename “rotoro”) 

builds on our RTRTR library

not only BMP, also BGP

many output formats, 
streams, files, pub/sub



shell API

metrics

shell API

metrics API

bgpbmp ws

shell API

ws

metrics

ws

bgp

bgp

ws

mqtt

ws

mqtt

bgp

rotoro(A)

rotoro(A)bgp

bgp

x

shell API

metrics

rotoro x

EXAMPLE CONFIGURATIONS

single runtime/single transformed output

two runtimes

single input/two transformed outputs

redundant ingress

single runtime/multiple input/two transformersTowards route 
services 

route collector 
route monitor 
(offline looking glass) 
route server 
route reflector



shell API

metrics API

single-threaded prefix store 

INPUTS 
single input/ 
single type

OUTPUTS 
single output/ 
single type

STORE 
(prefix, meta-data) 
pairs with hierarchy

can be a stand-alone runtime



shell API

metrics API

INPUTS 
multiple input/ 
single type

OUTPUTS 
multiple output/ 
single type

STORE 
(prefix, meta-data) 
pairs with hierarchy

multi-threaded prefix store 

can be a stand-alone runtime



INPUTS 
a single typed data 
stream

OUTPUTS 
a single typed data 
stream

programmable Filtermap  - 1 

lives in a filter stack in front of a RIB

datasource

TYPE A TYPE B



PROCESSING 
- ROTO filter/config 
language 

- accept/reject 
- transform input stream 
- realtime per packet 
processing

programmable Filtermap - 2 

lives in a filter stack in front of a RIB

datasource

TYPE A TYPE B

shell API

metrics



same functionality as a normal RIB, 
but doesn’t actually store 
anything, instead it consults its 
western RIB

virtual RIB 

lives in a filter stack in front of a RIB

datasource

TYPE A TYPE C

shell API

metrics

shell API

metrics

virtual RIB



INPUTS 
single input/ 
single type

OUTPUTS 
multiple outputs/ 
single type

type A

type A

type A

type A

BROADCASt stream 

can be a stand-alone runtime



∪
INPUTS 
multiple inputs/ 
multiple types

OUTPUTS 
single output/ 
single type

type A type C (A∪B)

type A

type B

merge streams 

can be a stand-alone runtime



INPUTS 
single input/ 
single types

OUTPUTS 
single output/ 
single type

connectors: INPUTS 

bmp 

bgp 

attached to a runtime



INPUTS 
single input/ 
single type

OUTPUTS 
single output/ 
single type

connectors: OUTPUTS 

mqtt 

ws 

attached to a runtime



WORK IN PROGRESS



merge

bmpbmpbmp

shell APImetrics API

merge

bmpbmpbmp

merge

bmpbmpbmp

stream output

stand-alone runtime

single-threaded store

multi-threaded store

shell APImetrics API shell APImetrics APIshell APImetrics API





- 1 physical RIB + 1 filtermap 
- 1 virtual RIB + 1 filtermap

- BMP input connector 
- BGP input connector

- BGP (limited) output 
connector 

- to file output 
connector



thank you



BMP as data 
ingress



“BMP provides access to the Adj-RIB-In of a 
peer on an ongoing basis (…). 

From a high level, BMP can be thought of as 
the result of multiplexing together the 

messages received on the various monitored 
BGP sessions.”

from “BMP: BGP Monitoring Protocol” (RFC 7854) 













BGP Updates on 
the wire

Paths stored in 
RIB



Getting data 
from your 

routers



PRE BMP
• Scraping the CLI 

• Configure a peering session with 
the router, receive all routes via 
BGP



With BMP
• Uni-directional stream of data over a single TCP connection from 

router to BMP station (‘Collector’) 

• Re-using BGP wire-formats,  'encapsulating' BGP UPDATEs with 
Per-Peer Headers 

• Additional information available: Statistics Reports with various 
counters, session related configuration



Paths stored in RIB



Paths stored in RIB



Paths stored in RIB



Paths stored in RIB



What 
happened 

before 
"steady state"?



With BMP

• What about the BGP UPDATEs exchanged before our BMP 
session was established? 

• What happens when a new BGP session between our 
monitored router and a peer is established?



With BMP
All contents of the monitored RIB are exported to the collector using 
the same BMP messages as when a new BGP sessions comes up: 

PeerUpNotification, 
[RouteMonitoringMessage, ..],  

RM-with-EoR,  
steady-state



Paths stored in RIB



Paths stored in RIB



Paths stored in RIB



Paths stored in RIB



Paths stored in RIB



Our experiences 
so far



The good stuff
• Monitoring ~250 production routers from a Tier 1 

provider, three different vendors, it works.

• Easy (re-)synchronisation of monitored RIBs without 
tears 

• Re-use of BGP wire-formats speeds up development



The could-be-nicer stuff
• Not all parsing can be done stateless, information from 

PeerUpNotifications needed to process 
RouteMonitoring Messages. (inherited from BGP)

• EoR signalling is messy and incomplete, or even non-
existent in some vendors 

• Inconsistencies in (headers in) BMP messages, and 
textually in standards documents



Evolution of BMP 
Standard 

documents

Aug '05 
draft-scudder-bmp-00

March '23 
IETF 116

June '16 
RFC7854 Adj-RIB-In

Nov '19 
RFC8671 Adj-RIB-Out

Feb '22 
RFC9069 Loc-RIB

you
 are

 

here

draft-cppy-grow-bmp-path-marking-tlv-12

draft-ietf-grow-bmp-tlv-12

draft-ietf-grow-bmp-tlv-ebit-02

BMP-bis? New BMP version?



Paths stored in RIB

Path marked "Best path"

Path marked "Backup" + “Not installed” or Path marked "ROV Invalid"



thank you


