

WHAT DO WE DO?

COREINTERNET

Governance related advisory

OPEN SOURCE SOFTWARE

soon-to-be super fast authoritative DNS resolver

NSD

RPKI validator ("Relying Party Software")

multi-purpose
DNS resolver

all singing and dancing delegated RPKI

memory-safety strongly, statically typed raw performance (no garbage collection) composability (dependencies, modules)

ROUTING OBSERVABILITY

ASOLUTION

A BETTER SOLUTION

PREFIX FILTERS

RELYING PARTY
SOFTWARE

validated cache

needs RTR next gen

ANOTHER SOLUTION

PREFIX FILTERS

RELYING PARTY SOFTWARE

validated cache

needs a high-performance, scalable, real-time streaming, stateful collector

ANATOMY OF A COLLECTOR

COMPOSABLE RUNTIMES

combine into single runtime

multiple runtimes connected by RTR-inspired protocol (codename "rotoro")

builds on our RTRTR library

not only BMP, also BGP

many output formats, streams, files, pub/sub

RUNTIMES

STORAGE

multiple input

input transformers

TRANSFORMERS

CHANNEL OPERATORS

broadcast

output transformers

TOWARDS ROUTE SERVICES

route collector
route monitor
(offline looking glass)
route server
route reflector

EXAMPLE CONFIGURATIONS

single runtime/single transformed output

single runtime/multiple input/two transformers

two runtimes

single input/two transformed outputs

redundant ingress

SINGLE-THREADED PREFIX STORE

STORE

(prefix, meta-data) pairs with hierarchy

<u>INPUTS</u>

single input/ single type

<u>OUTPUTS</u>

single output/ single type metrics API

shell API

can be a stand-alone runtime

MULTI-THREADED PREFIX STORE

STORE

(prefix, meta-data) pairs with hierarchy

<u>INPUTS</u>

multiple input/
single type

<u>OUTPUTS</u>

multiple output/ single type

can be a stand-alone runtime

PROGRAMMABLE FILTERMAP - 1

<u>INPUTS</u>

a single typed data stream

<u>OUTPUTS</u>

a single typed data stream

lives in a filter stack in front of a RIB

PROGRAMMABLE FILTERMAP - 2

PROCESSING

- ROTO filter/config language
- accept/reject
- transform input stream
- realtime per packet
 processing

lives in a filter stack in front of a RIB

VIRTUAL RIB

same functionality as a normal RIB, but doesn't actually store anything, instead it consults its western RIB

lives in a filter stack in front of a RIB

BROADCAST STREAM

<u>INPUTS</u>

single input/ single type

<u>OUTPUTS</u>

multiple outputs/ single type

can be a stand-alone runtime

MERGE STREAMS

<u>INPUTS</u>

multiple inputs/multiple types

<u>OUTPUTS</u>

single output/ single type

can be a stand-alone runtime

CONNECTORS: INPUTS

<u>INPUTS</u>

single input/ single types

<u>OUTPUTS</u>

single output/ single type

bgp

attached to a runtime

CONNECTORS: OUTPUTS

<u>INPUTS</u>

single input/ single type

<u>OUTPUTS</u>

single output/ single type

attached to a runtime

WORK IN PROGRESS

THARK YOU

BMP AS DATA INGRESS

"BMP provides access to the Adj-RIB-In of a peer on an ongoing basis (...). From a high level, BMP can be thought of as the result of multiplexing together the messages received on the various monitored BGP sessions."

AS1> possible routes to 10.1.2.0/24?

a. AS3 AS4

b. AS2 AS3 AS4

GETTING DATA FROM YOUR ROUTERS

DREBAD

- Scraping the CLI
- Configure a peering session with the router, receive all routes via BGP

WIII BRID

- Uni-directional stream of data over a single TCP connection from router to BMP station ('Collector')
- Re-using BGP wire-formats, 'encapsulating' BGP UPDATEs with Per-Peer Headers
- Additional information available: Statistics Reports with various counters, session related configuration

STEADY STATE?

WITH BHD

- What about the BGP UPDATEs exchanged before our BMP session was established?
- What happens when a new BGP session between our monitored router and a peer is established?

All contents of the monitored RIB are exported to the collector using the same BMP messages as when a new BGP sessions comes up:

PEERUPNOTIFICATION,

[ROUTEMONITORINGMESSAGE, ..],

RM-WITH-EOR,

STEADY-STATE

OUR EXPERIENCES SO FAR

THE GODSTUFF

- Monitoring ~250 production routers from a Tier 1
 provider, three different vendors, it works.
- Easy (re-)synchronisation of monitored RIBs without tears
- Re-use of BGP wire-formats speeds up development

THE COULD-BE-NICER STUFF

- Not all parsing can be done stateless, information from PeerUpNotifications needed to process RouteMonitoring Messages. (inherited from BGP)
- EoR signalling is messy and incomplete, or even nonexistent in some vendors
- Inconsistencies in (headers in) BMP messages, and textually in standards documents

EVOLUTION OF BMP STANDARD DOCUMENTS

THARK YOU