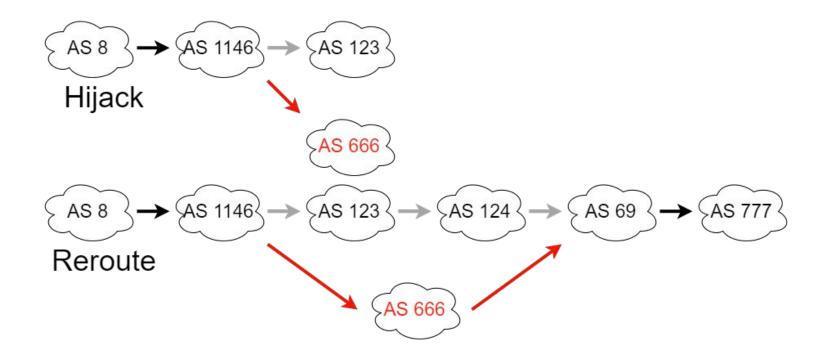

ImpROVement

Kevin Klercq Willem Toorop Koen van Hove



Yet Another Explanation of BGP

- Network of networks
- Interconnect them
- Organization = Autonomous system
- Announce your prefixes to your neighbors
- Not safe

Arr Matey, This Be a BGP Hijack

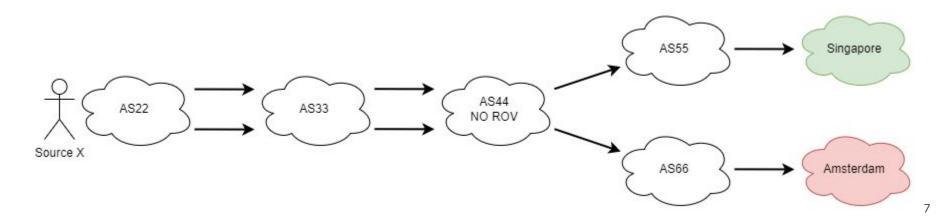
Hmm... What were those ROAs again?

- Resources (ASNs and prefixes) handed out by IANA to the 5 regional internet registries
- RIRs hand out to organizations

- Valid: ROA exists and everything is good
- Unknown: No ROA exists
- Invalid: ROA exists and received advertisement violates existing ROA (invalid prefix length, wrong AS)

RIPE NCC signs the certificate from ING Bank

Can we determine which ASes really should start doing ROV?


Now For The Fun Part

- Two announcements. /23 and /24 (subnet of /23).
- /23 is valid and less specific
- /24 is invalid and more specific
- /23 is anycasted (Vultr, 30 locations), /24 in Amsterdam (ColoClue)

Key Observations

- Every router makes its own routing decisions
- A router that does ROV only routes both IP-addresses equally
- A router that does **not** do ROV likely routes both IP-addresses differently

So, What Are The Results?

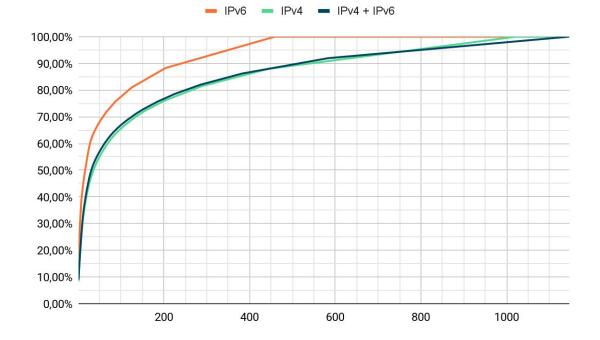
- Measurements on 2023-03-10 on RIPE Atlas with 12115 probes (Thank you Emile¹)
- Caveat: we only see the first AS on the path that misdirects.

	msm id	IPv6 equivalent
dig @185.49.142.6 rpkitest.nlnetlabs.nl TXT +nsid	<u>50791569</u>	<u>50791565</u>
traceroute 185.49.142.6	<u>50791571</u>	<u>50791567</u>
traceroute 185.49.143.6	<u>50791572</u>	<u>50791568</u>
dig @185.49.143.6 rpkitest.nlnetlabs.nl TXT +nsid	<u>50791570</u>	<u>50791566</u>

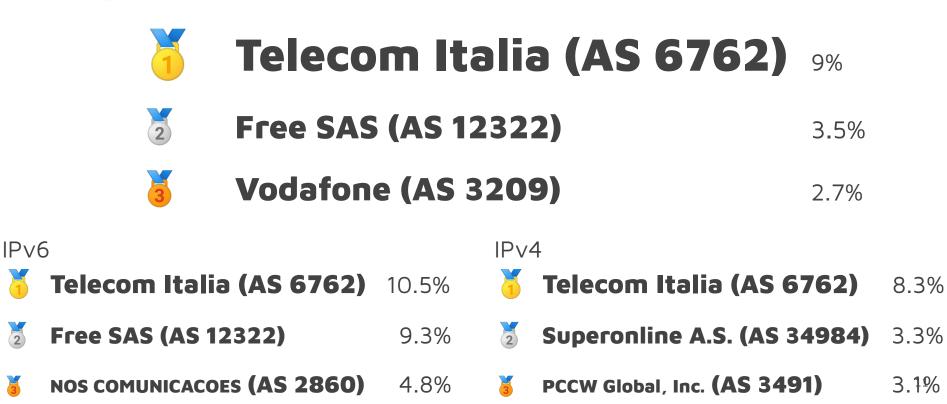
43%

48%

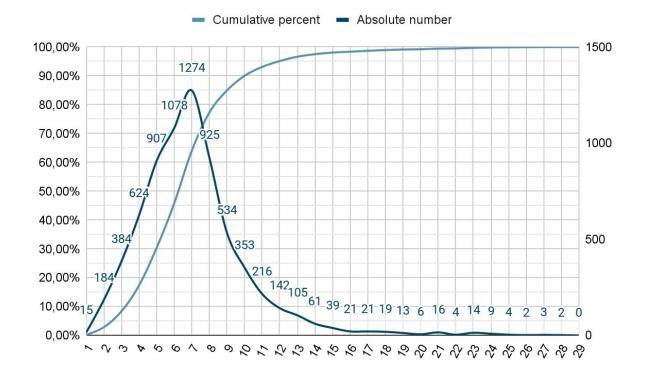
 \dots of IPv4 probes ended up at the invalid


(5539 out of 11442)

... of IPv6 probes ended up at the invalid

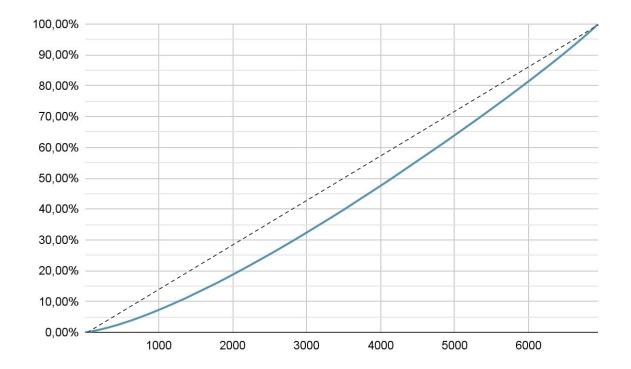

(2288 out of 5285)

The impact if the top N ASes that currently do not do ROV would do ROV



Percentage of total number of resolvers having affinity with a certain POP

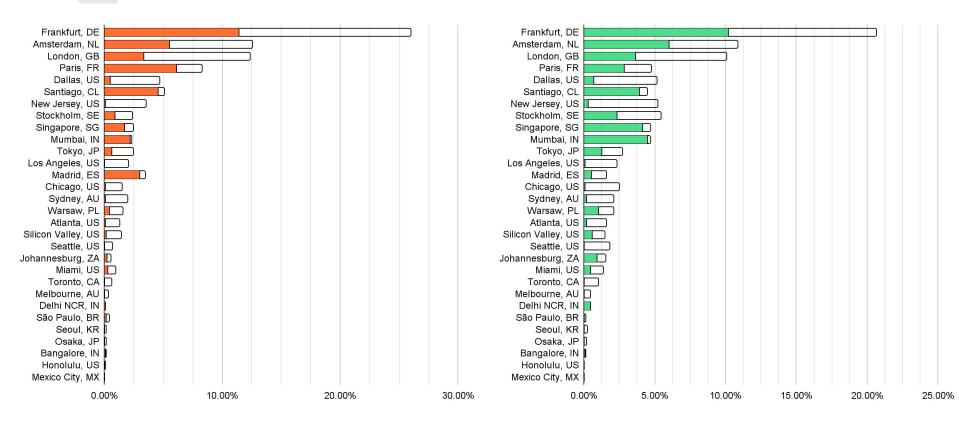
Coloured area reaching the invalid


Frankfurt, DE	- I I I			
Amsterdam, NL	1 1 1			
London, GB				
Paris, FR				
Dallas, US				
Santiago, CL				
New Jersey, US				
Stockholm, SE				
Singapore, SG				
Mumbai, IN				
Tokyo, JP				
Los Angeles, US				
Madrid, ES				
Chicago, US				
Sydney, AU				
Warsaw, PL				
Atlanta, US				
Silicon Valley, US				
Seattle, US				
Johannesburg, ZA				
Miami, US				
Toronto, CA				
Melbourne, AU				
Delhi NCR, IN				
São Paulo, BR	D			
Seoul, KR				
Osaka, JP	D			
Bangalore, IN	1			
Honolulu, US				
Mexico City, MX				
		 A 5 A 5	A 10 0 10 10	

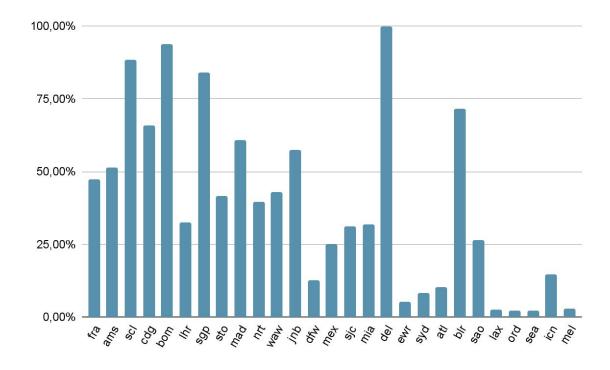
Traffic divergence per hop

13

Cumulative diverging hop relative to valid path length



Conclusions


- A small group of organisations can have a big impact on routing security
- This can happen anywhere on the path
- Some POPs fare better than others

Percentage of total number of resolvers having affinity with a certain POP (IPv6 vs IPv4)

Coloured area reaching the invalid

Percentage of traffic for a specific POP ending up at the invalid (sorted by most common POP)

fra: Frankfurt, DE ams: Amsterdam, NL scl: Santiago, CL cdg: Paris, FR bom: Mumbai, IN lhr: London. GB sgp: Singapore, SG sto: Stockholm, SE mad: Madrid, ES nrt: Tokyo, JP waw: Warsaw, PL inb: Johannesburg, ZA dfw: Dallas, US sjc: Silicon Valley, US mia: Miami, US del: Delhi NCR, IN ewr: New Jersey, US syd: Sydney, AU atl: Atlanta, US blr: Bangalore, IN sao: São Paulo, BR lax: Los Angeles, US ord: Chicago, US sea: Seattle. US icn: Seoul. KR mel: Melbourne, AU mex: Mexico City,1XX