
Use of Repository Deposit Protocol

Table of Contents

Introduction
Part A: Use of SWORD features
Part B: Use of AtomPub features
Appendix 1: Packaging
Appendix 2: Examples
References

Introduction
Institutional Repositories are increasingly used as archives for publications, theses and other scholarly or educational output. With this, the
archival services offered by repository applications maintained by the university libraries is used in an increasing number of business processes,
whether this being the deposit of peer reviewed stage 2 material, the deposit of bachelor theses at the and of the academic year or the need to
archive research data.
With this, library staff and repository applications need to accommodate more and more use cases, each requiring its specific needs, e.g. the
deposit of a thesis resulting from a collaborative effort for publication in the HBO Kennisbank or the self-archival of research data at an external
data repository.
In order to create a scalable solution, the need arises to separate the archival service from services that support the deposit workflows and to
loosely couple institutional repositories with specialised deposit application which then exchange information through standardised web service
interfaces.
This application profile describes a protocol to allow the deposit of publications, theses and research data to institutional repositories.

Standards reference for this application profile

SWORD: Simple Web service Offering Repository Deposit

The first version of was developed in a funded by as an effort to 'lowering the Simple Web service Offering Repository Deposit project JISC
barriers to deposit, principally for depositing content (any content!) into repositories, but potentially for depositing into any system which wants to
receive content from remote sources'. It is in itself an application profile of the Atom Publishing Protocol (AtomPub) described in used RFC 5023
for the publishing and editing of web resources using HTTP and XML 1.0. Although related, the AtomPub protocol is not to be confused with the
Atom Syndication Format described commonly used for web feeds used to check for updates on a website.RFC 4287

The current version of SWORD at the time of writing is , although a new is in the making. This version however still has a version 1.3 2.0 version
working beta status and has not been finalised.

This application profile is based on .#SWORDv1.3

Part A: Use of SWORD features
This section will describe the use of the SWORD profile in the context of the SURFshare programme. The contents are organised according and
supplementary to the document Part A. If a SWORD profile section or feature is omitted, implementations MUST behave as #SWORDv1.3
defined in SWORD profile.

1. Package Support

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in .RFC 2119

http://swordapp.org/sword-v1/the-specification/
http://www.jisc.ac.uk/whatwedo/programmes/reppres/tools/sword.aspx
http://www.jisc.ac.uk/
http://tools.ietf.org/html/rfc4287
http://swordapp.org/sword-v2/sword-v2-specifications/
http://tools.ietf.org/html/rfc2119

1.1. Package support in Service Description

The server MAY support multiple packaging formats with varying quality values according to the support of the Common Submission Information
Package (SIP) specified in .#Appendix 1

The server MUST support at least one package format with Quality Value "1.0", indicating full support where all components supplied within the
SIP will be processed and understood when using the designated package format.

All supported formats MUST be listed in the Service Document.

All formats listed in the Service Document MUST have a Quality Value attribute assigned.

The value used in the element MUST NOT overload any values enumerated in the SWORD Content Package <sword:acceptedPackaging>
Types.

The server MAY use the element in the Service Document to indicate the existence of other service interfaces supporting <sword:service>
additional package formats.

The server SHOULD NOT accept a specific package format across multiple interfaces with different levels of support as indicated by the Quality
Value attribute in the Service Document.

1.2 Package support during Resource Creation

When describing packaged resources in Media Entry documents, the server SHOULD add sword:packaging elements to the entry.

1.3 Package description in entry documents

If a server receives a POST request with a format that is not listed as an accepted format in the Service Document, the server MUST reject the
package by returning an (unsupported media type).#HTTP 415

2 Mediated Deposit

2.1 Mediation in Service Description

Servers supporting mediated deposit MUST indicate this by including a element with a value of " " in the Service sword:mediation true
Document as defined in section 2.1.#SWORDv1.3
For servers that do not include a SWORD mediation element in the Service Document, a default value of " " SHOULD be assumed by clients.no

4 Auto Discovery
AtomPub makes no recommendations on the discovery of Service Documents.
The SWORD profile states that it is RECOMMENDED that server implementations use an <html:link rel="sword" href="

 element in the head of a relevant HTML document to assist with service http://example.org/sword/servicedocument.atom"/>
discovery.
In addition, it is RECOMMENDED to also include an <atom:link rel="sword" type="application/atomsvc+xml" href="

 element in relevant response documents such as Error Document.http://example.org/sword/servicedocument.atom"/>

6 Nested Service Description
Nested Service Descriptions MAY be used to specify alternative collections for both organisational (i.e. generic collection with a nested discipline
specific collection) and technical purposes (i.e. a specific interface or service instance to cater for specific types of content packaging).

Part B: Use of AtomPub features

todo

The contents are organised according and supplementary to the document Part B, which is turn is organised according to the #SWORDv1.3
sections of RFC 5023 describing . If a section or feature is omitted, implementations MUST behave as defined in #AtomPub #SWORDv1.3 #SWO

 profile.RDv1.3

9. Creating and Editing Resources
When depositing resources using SWORD, resources are created by a server when a client makes an HTTP POST request with the resource in
the HTTP request body. If the deposit is made successfully, the server then gives a HTTP reponse with the status code in the header #HTTP 201
of the response indicating the resource has been successfully created at the repository side.

Servers returning a status code after a deposit MUST preserve the resource deposited.#HTTP 201

Clients receiving a status code MUST consider the resource deposited as being accepted for storage by the repository.#HTTP 201

9.2.2. Asynchronous treatment of resources
It MAY however be the case that the repository implements an additional asynchronous validation process after which a resource MAY or MAY
NOT be accepted. This for instance is the case when a repository uses an intermediate repository where resources deposited through the
SWORD interface are temporarily stored, after which they will be moved to a final location within the repository when they are properly validated
by a repository manager. When a resource is then being rejected by the repository during the validation process after the server has sent an #HT

 response to the client, the situation MAY arise where the client considers the resource as being successfully deposited into the TP 201
repository, while in fact the resource is NOT being stored into the repository. This situation is viewed as undesirable.

Servers implementing an asynchronous validation process MUST return an Accept response code indicating the request has been #HTTP 202
accepted for processing, but the processing has not been completed.

Clients receiving a status code upon deposit of a resource MUST consider the resource deposited as NOT being stored into the #HTTP 202
repository.
RFC2616 states that there is no facility for the re-sending of status codes. Therefore, a client will not receive a notification of the outcome of the
processing carried out by the server. In order to allow clients to retrieve the outcome of the deposit, the sword:treatment element MAY contain
the status of the processing of the deposited resource.

Servers implementing status codes MUST supply a permanent link to the Atom Entry document of the response.#HTTP 202

Servers implementing status codes MUST update the sword:treatment element of the Atom Entry document of the resource with the #HTTP 202
status of the processing of the deposited resource.

Client SHOULD implement a mechanism to confirm the successful deposit by periodically checking back at the server with an HTTP GET request
to the permanent link supplied by the server, in order to check the contents of the element of the Atom Entry describing the sword:treatment
deposited resource when a status code has been received upon deposit.#HTTP 202

14. Securing the Atom Publishing Protocol
The SWORD profile states servers SHOULD support the use of HTTP Basic Authentication over TLS. In many institutional security policies,
using basic authentication over unencrypted connections. de facto sending authentication credentials in plain view is viewed insufficient.
Therefore this requirement has been restated as follows:

Servers implementing SWORD MUST support HTTP Basic Authentication () over TLS ().RFC 2617 RFC 2818

Appendix 1: Packaging

Appendix 2: Examples

References
SWORDv1.3. Allinson, J et al, "SWORD AtomPub Profile version 1.3". http://www.swordapp.org/docs/sword-profile-1.3.html

AtomPub. Gregario, J. and B. de hOra, "The Atom Publishing Protocol", RFC 5023, October 2007. (see also http://www.ietf.org/rfc/rfc5023.txt
non-normative html version at)http://bitworking.org/projects/atom/rfc5023.html

http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.swordapp.org/docs/sword-profile-1.3.html
http://www.ietf.org/rfc/rfc5023.txt
http://bitworking.org/projects/atom/rfc5023.html

HTTP1.1 Fielding et al, "Hypertext Transfer Protocol – HTTP/1.1", RFC 2616, June 1999 http://www.w3.org/Protocols/rfc2616/rfc2616.html

HTTP 201. Created. http://tools.ietf.org/html/rfc2616#section-10.2.2
HTTP 202. Accepted. http://tools.ietf.org/html/rfc2616#section-10.2.3
HTTP 415. Unsupported Media Type. http://tools.ietf.org/html/rfc2616#section-10.4.16

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://tools.ietf.org/html/rfc2616#section-10.2.2
http://tools.ietf.org/html/rfc2616#section-10.2.3
http://tools.ietf.org/html/rfc2616#section-10.4.16

	Use of Repository Deposit Protocol

