
OpenID Connect features
This page describes all the OpenID Connect (OIDC) features supported by SURFconext. All features mentioned here are compliant with the

.OpenID Connect specification

Getting claims (attributes)
Supported flows
Proof Key for Code Exchange (PKCE)
Scopes
Prompt = login
Request adding claims to the id_token
Refresh tokens
Playground

Getting claims (attributes)
Most services require extra information about the authenticated user, such as a name, email address or affiliation. In OpenID Connect (OIDC),
this extra information comes in the form of , whereas in SAML, claims are called . Check out our extensive documentation on claims attributes
claims .here

There is more then one way to get claims. By default you can use the . Almost any OpenID Connect libary or OIDC supported userinfo endpoint
application has support for it. If your library or application expects the , you can request those using the claims to be present in the id_token "cla
ims" request parameter.

Use our to see how this works.OIDC Playground application

Another alternative is that we always return the claims in the id_token. Please contact support if you want us to enable that option.

Supported flows
All OpenID Connect flows (code, implicit and hybrid) are supported by SURFconext. We strongly recommend you use the for your code flow
application. If you have a client that is not able to keep a secret (e.g. a Mobile App, or a JavaScript client), using PKCE is required. This method
is described below.

With the during the authorisation request you can specify which flow to use. The following values are allowed:response_type parameter

flow reponse_type parameter

Authorization Code code

Implicit id_token

Implicit id_token token

Hybrid code id_token

Hybrid code token

Hybrid code id_token token

Proof Key for Code Exchange (PKCE)
PKCE is a security extension for public clients, originally for OAuth2. It mitigates attacks where the authorization code on public clients can be
intercepted, such as Mobile or Desktop Apps which use callback URLs. For example, a rogue app can hijack the redirect URL and then obtain
the authorisation code. These public clients typically do not have a secret configured when they exchange the code for an at the access_token
token endpoint.

PKCE solves this problem as follows. When an authorisation request is made, the RP generates a secret, and for more security, a hash of that
secret. Two additional parameters are used:

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://wiki.surfnet.nl/display/surfconextdev/OpenID+Connect+claims+in+SURFconext
https://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter
https://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter
https://oidc-playground.test.surfconext.nl

code_challenge=XXXXX: The hash of the secret that has been generated
code_challenge_method=S256: This can be either S256, meaning that the SHA-256 hash of the secret is given, or plain, meaning
that the secret itself is transmitted.

The server then ensures the generated code and the supplied code_challenge are stored.

In the request to the token endpoint, the is added, which is the secret that has been generated. The OIDC server then checks code_verifier
whether the secret is the same as the one in the original authorisation request. If not, no and are provided. This access_token id_token
effectively binds the first authorisation request to the token request.

More information can be found in the specification: https://tools.ietf.org/html/rfc7636

Scopes
Currently, we only support the scope . You may use any of the other scopes as specified in the OpenID Connect specification (profile, openid
email, address, phone) but these are silently ignored. You will receive the claims you requested during the deployment in the SP Dashboard.

Prompt = login
Adding the parameter to the authorisation request will attempt to Single Sign-On, by instructing the user's Identity prompt=login disable
Provider to show the login screen and forcing the user re-authenticate. Please note that this greatly impacts the user experience, as users will
have to re-enter their credentials at the IdP, even if they very recently already did so. Only use this parameter when it is necessary. Don't really
hesitate to ask the SURFconext support team for help if you have doubts whether to apply it or not.

Important: Not all IdPs in SURFconext support this. You should also not rely on this feature as a security feature, since it is possible to disable it
during a login request.

Request adding claims to the id_token
SURFconext supports which allows RPs to have the claims in the instead of in the user-info endpoint. the request parameterclaims id_token
Important: our minimal disclosure policy regarding the release of claims/attributes dictates which claims you are allowed to receive. You will not
receive any claims you request which you are not allowed to receive.

More info on claims .can be found here

Refresh tokens
If you use OpenID Connect in combination with API security (i.e. you have a resource server) you can use refresh tokens in order to keep the
lifetime of the access tokens shorter. Please refer to t for more in depth information on refresh tokens.his page

Playground
In addition to this page, you can also play around with our . This application allows you to review all features and, for playground application
instance, have a closer look at headers and responses with your application.

https://tools.ietf.org/html/rfc7636
https://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter
https://wiki.surfnet.nl/display/surfconextdev/Claims
https://wiki.surfnet.nl/display/surfconextdev/Refresh+Tokens+-+What+are+they+and+when+to+use+them
https://oidc-playground.test.surfconext.nl

	OpenID Connect features

